2016-10-29 22:36:39 +00:00
|
|
|
export onehot, onecold, chunk, partition, batches, sequences
|
|
|
|
|
2017-04-17 17:15:01 +00:00
|
|
|
convertel(T::Type, xs::AbstractArray) = convert.(T, xs)
|
2017-01-25 12:40:56 +00:00
|
|
|
convertel{T}(::Type{T}, xs::AbstractArray{T}) = xs
|
|
|
|
|
2016-12-16 15:54:55 +00:00
|
|
|
"""
|
|
|
|
onehot('b', ['a', 'b', 'c', 'd']) => [false, true, false, false]
|
|
|
|
|
|
|
|
onehot(Float32, 'c', ['a', 'b', 'c', 'd']) => [0., 0., 1., 0.]
|
|
|
|
|
|
|
|
Produce a one-hot-encoded version of an item, given a list of possible values
|
|
|
|
for the item.
|
|
|
|
"""
|
2016-10-29 22:36:39 +00:00
|
|
|
onehot(T::Type, label, labels) = T[i == label for i in labels]
|
|
|
|
onehot(label, labels) = onehot(Int, label, labels)
|
2016-12-16 15:54:55 +00:00
|
|
|
|
|
|
|
"""
|
|
|
|
onecold([0.0, 1.0, 0.0, ...],
|
|
|
|
['a', 'b', 'c', ...]) => 'b'
|
|
|
|
|
|
|
|
The inverse of `onehot`; takes an output prediction vector and a list of
|
|
|
|
possible values, and produces the appropriate value.
|
|
|
|
"""
|
2016-10-29 22:36:39 +00:00
|
|
|
onecold(pred, labels = 1:length(pred)) = labels[findfirst(pred, maximum(pred))]
|
|
|
|
|
|
|
|
using Iterators
|
2017-02-23 23:40:22 +00:00
|
|
|
import Iterators: Partition, partition
|
2016-10-29 22:36:39 +00:00
|
|
|
|
|
|
|
export partition
|
|
|
|
|
2017-02-23 23:40:22 +00:00
|
|
|
Base.length(l::Partition) = length(l.xs) ÷ l.step
|
2016-10-30 00:18:20 +00:00
|
|
|
|
2016-10-29 22:36:39 +00:00
|
|
|
_partition(r::UnitRange, step::Integer) = (step*(i-1)+1:step*i for i in 1:(r.stop÷step))
|
|
|
|
_partition(xs, step) = (xs[i] for i in _partition(1:length(xs), step))
|
|
|
|
|
|
|
|
chunk(xs, n) = _partition(xs, length(xs)÷n)
|
|
|
|
|
|
|
|
batches(xs...) = (Batch(x) for x in zip(xs...))
|
|
|
|
sequences(xs, len) = (Seq(x) for x in partition(xs, len))
|