update mnist example

This commit is contained in:
Mike J Innes 2017-02-02 10:09:41 +05:30
parent f932f4bd9f
commit f3a9934858
3 changed files with 5 additions and 4 deletions

View File

@ -1,6 +1,6 @@
using Flux, MNIST
data = [(Vector{Float32}(trainfeatures(i)), onehot(Float32, trainlabel(i), 0:9)) for i = 1:60_000]
data = [(trainfeatures(i), onehot(trainlabel(i), 0:9)) for i = 1:60_000]
train = data[1:50_000]
test = data[50_001:60_000]
@ -16,7 +16,7 @@ model = tf(m)
# An example prediction pre-training
model(data[1][1])
@time Flux.train!(model, train, test, η = 1e-3)
@time Flux.train!(model, train, test, η = 1e-4)
# An example prediction post-training
model(data[1][1])

View File

@ -80,7 +80,8 @@ function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
info("Epoch $e\n")
@progress for (x, y) in train
y, cur_loss, _ = run(m.session, vcat(m.output, Loss, minimize_op),
Dict(m.inputs[1]=>batchone(x), Y=>batchone(y)))
Dict(m.inputs[1] => batchone(convertel(Float32, x)),
Y => batchone(convertel(Float32, y))))
if i % 5000 == 0
@show y
@show accuracy(m, test)

View File

@ -2,7 +2,7 @@ export AArray
const AArray = AbstractArray
initn(dims...) = randn(dims...)/10
initn(dims...) = randn(dims...)/100
function train!(m, train, test = []; epoch = 1, batch = 10, η = 0.1)
i = 0