907: Change `gate` function to `view` instead of copy r=MikeInnes a=janEbert
This speeds up code with large inputs by quite a lot. I only added it to the function accepting an `AbstractVector` as input as copying matrices may be faster than viewing them due to caching (they are sliced per row so will the data will not necessarily have a low stride).
Co-authored-by: janEbert <janpublicebert@posteo.net>
898: Fix problem in crossentropy breaking GPU compilation r=MikeInnes a=kshyatt
Trying to run this simple example
```
using Flux, CuArrays
using Flux: crossentropy
model = Chain(
Dense(728, 128, σ),
LSTM(128, 256),
LSTM(256, 128),
Dense(128, 10),
softmax) |> gpu
data = [rand(728) for i in 1:100];
out = [rand(10) for i in 1:100];
loss(x, y) = crossentropy(model(x), y);
Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())
```
Old version of `crossentropy`:
```
ERROR: GPU compilation of #23(CuArrays.CuKernelState, CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global}, Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}) failed
KernelError: passing and using non-bitstype argument
Argument 4 to your kernel function is of type Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}.
That type is not isbits, and such arguments are only allowed when they are unused by the kernel. .args is of type Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}} which is not isbits.
.1 is of type Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}} which is not isbits.
.x is of type Array{Float32,1} which is not isbits.
Stacktrace:
[1] check_invocation(::CUDAnative.CompilerJob, ::LLVM.Function) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/validation.jl:70
[2] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:187 [inlined]
[3] macro expansion at /mnt/home/khyatt/.julia/packages/TimerOutputs/7zSea/src/TimerOutput.jl:216 [inlined]
[4] #codegen#136(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.codegen), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:186
[5] #codegen at ./none:0 [inlined]
[6] #compile#135(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.compile), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:47
[7] #compile#134 at ./none:0 [inlined]
[8] #compile at ./none:0 [inlined] (repeats 2 times)
[9] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:389 [inlined]
[10] #cufunction#176(::Nothing, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(CUDAnative.cufunction), ::GPUArrays.var"#23#24", ::Type{Tuple{CuArrays.CuKernelState,CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
[11] cufunction(::Function, ::Type) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
[12] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:174 [inlined]
[13] macro expansion at ./gcutils.jl:91 [inlined]
[14] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:171 [inlined]
[15] _gpu_call(::CuArrays.CuArrayBackend, ::Function, ::CuArray{Float32,1}, ::Tuple{CuArray{Float32,1},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CuArray{Float32,1},Tuple{Bool},Tuple{Int64}}}}}}}, ::Tuple{Tuple{Int64},Tuple{Int64}}) at /mnt/home/khyatt/.julia/dev/CuArrays/src/gpuarray_interface.jl:60
[16] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:151 [inlined]
[17] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:128 [inlined]
[18] copyto! at /mnt/home/khyatt/.julia/dev/GPUArrays/src/broadcast.jl:48 [inlined]
[19] copyto! at ./broadcast.jl:863 [inlined]
[20] copy at ./broadcast.jl:839 [inlined]
[21] materialize at ./broadcast.jl:819 [inlined]
[22] (::Zygote.var"#1310#1311"{CuArray{Float32,1},CuArray{Float32,1}})(::Array{Float32,1}) at /mnt/home/khyatt/.julia/dev/Zygote/src/lib/broadcast.jl:68
```
New version:
```
julia> Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())
julia> # everyone finished happily and went on with their lives
```
Co-authored-by: Katharine Hyatt <khyatt@flatironinstitute.org>
904: Documenting Optimiser Interface r=MikeInnes a=MikeInnes
I needed to add one extra commit to #875 before merging.
Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
Co-authored-by: Dhairya Gandhi <dhairya@juliacomputing.com>
Co-authored-by: Mike Innes <mike.j.innes@gmail.com>
882: Check if CUDA availability changed during init. r=MikeInnes a=maleadt
With this PR, Flux checks using CUDAapi if CUDA is available during initialization, and forces recompilation if that does not agree with what was decided during precompilation. This avoids the scenario where Flux was precompiled without GPU support, consequently not allowing use of the GPU even if the user fixed his CUDA/GPU set-up because that does not force recompilation (and we can't add precompilation dependencies on stuff that doesn't exist).
However, we can't do the same for the case where we have a GPU/CUDA but CuArrays fails to import (checking if it imports during `__init__` would be much too expensive, if even possible), so this PR removes support for having CUDA/a GPU but CuArrays being broken. That's a little risky now that Flux depends on CuArrays, but the package is pretty mature and I haven't seen many bug reports failing to load it recently.
Fixes https://github.com/FluxML/Flux.jl/pull/852#issuecomment-538028314
cc @MikeInnes @xukai92
Co-authored-by: Tim Besard <tim.besard@gmail.com>