Model Reference

Layers

These core layers form the foundation of almost all neural networks.

Flux.ChainType.
Chain(layers...)

Chain multiple layers / functions together, so that they are called in sequence on a given input.

m = Chain(x -> x^2, x -> x+1)
m(5) == 26

m = Chain(Dense(10, 5), Dense(5, 2))
x = rand(10)
m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length out.

julia> d = Dense(5, 2)
Dense(5, 2)

julia> d(rand(5))
Tracked 2-element Array{Float64,1}:
  0.00257447
  -0.00449443
source

Recurrent Cells

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNFunction.
RNN(in::Integer, out::Integer, σ = tanh)

The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.

source
Flux.LSTMFunction.
LSTM(in::Integer, out::Integer, σ = tanh)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

source
Flux.RecurType.
Recur(cell)

Recur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:

h, y = cell(h, x...)

For example, here's a recurrent network that keeps a running total of its inputs.

accum(h, x) = (h+x, x)
rnn = Flux.Recur(accum, 0)
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
source

Activation Functions

Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.

Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.

NNlib.σFunction.
σ(x) = 1 / (1 + exp(-x))

Classic sigmoid activation function.

source
NNlib.reluFunction.
relu(x) = max(0, x)

Rectified Linear Unit activation function.

source
NNlib.leakyreluFunction.
leakyrelu(x) = max(0.01x, x)

Leaky Rectified Linear Unit activation function.

You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).

source
NNlib.eluFunction.
elu(x; α = 1) = x > 0 ? x : α * (exp(x) - one(x)

Exponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units

source
NNlib.swishFunction.
swish(x) = x * σ(x)

Self-gated actvation function.

See Swish: a Self-Gated Activation Function.

source