55 lines
1.4 KiB
Markdown
55 lines
1.4 KiB
Markdown
# One-Hot Encoding
|
||
|
||
It's common to encode categorical variables (like `true`, `false` or `cat`, `dog`) in "one-of-k" or ["one-hot"](https://en.wikipedia.org/wiki/One-hot) form. Flux provides the `onehot` function to make this easy.
|
||
|
||
```
|
||
julia> using Flux: onehot, onecold
|
||
|
||
julia> onehot(:b, [:a, :b, :c])
|
||
3-element Flux.OneHotVector:
|
||
false
|
||
true
|
||
false
|
||
|
||
julia> onehot(:c, [:a, :b, :c])
|
||
3-element Flux.OneHotVector:
|
||
false
|
||
false
|
||
true
|
||
```
|
||
|
||
The inverse is `onecold` (which can take a general probability distribution, as well as just booleans).
|
||
|
||
```julia
|
||
julia> onecold(ans, [:a, :b, :c])
|
||
:c
|
||
|
||
julia> onecold([true, false, false], [:a, :b, :c])
|
||
:a
|
||
|
||
julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
|
||
:c
|
||
```
|
||
|
||
## Batches
|
||
|
||
`onehotbatch` creates a batch (matrix) of one-hot vectors, and `onecold` treats matrices as batches.
|
||
|
||
```julia
|
||
julia> using Flux: onehotbatch
|
||
|
||
julia> onehotbatch([:b, :a, :b], [:a, :b, :c])
|
||
3×3 Flux.OneHotMatrix:
|
||
false true false
|
||
true false true
|
||
false false false
|
||
|
||
julia> onecold(ans, [:a, :b, :c])
|
||
3-element Array{Symbol,1}:
|
||
:b
|
||
:a
|
||
:b
|
||
```
|
||
|
||
Note that these operations returned `OneHotVector` and `OneHotMatrix` rather than `Array`s. `OneHotVector`s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.
|