23 lines
450 B
Julia
23 lines
450 B
Julia
using Flux, MNIST
|
|
|
|
data = [(trainfeatures(i), Vector{Float64}(onehot(trainlabel(i), 0:9))) for i = 1:60_000]
|
|
train = data[1:50_000]
|
|
test = data[50_001:60_000]
|
|
|
|
m = Chain(
|
|
Input(784),
|
|
Dense(128), relu,
|
|
Dense( 64), relu,
|
|
Dense( 10), softmax)
|
|
|
|
# Convert to TensorFlow
|
|
model = tf(m)
|
|
|
|
# An example prediction pre-training
|
|
model(data[1][1])
|
|
|
|
@time Flux.train!(model, train, test, η = 1e-3)
|
|
|
|
# An example prediction post-training
|
|
model(data[1][1])
|