Flux.jl/src/backend/tensorflow/model.jl
2017-05-30 18:04:31 +01:00

82 lines
2.0 KiB
Julia

using Flux: mapt, collectt, shapecheckt
struct Exec
session ::Session
input ::Any
output ::Any
grads ::Any
params ::Dict{Flux.Param,Tensor}
stacks ::Dict{Any,Any}
end
function makesession(model, inputs; session = Session(Graph()))
inputs = mapt(_ -> placeholder(Float32), inputs)
params, stacks, output = tograph(model, inputs...)
# grads = gradients(output, [collectt(inputs)..., values(params)...])
grads = placeholder(Float32)
run(session, global_variables_initializer())
Exec(session, inputs, output, grads, params, stacks)
end
retuple(xs) = xs
retuple(xs::AbstractArray{<:AbstractArray}) = (retuple.(xs)...,)
dictt(xs, ys) = Dict(zip(collectt(xs), collectt(ys)))
function params(m::Exec, args...)
shapecheckt(m.input, args)
idict = dictt(m.input, args)
pdict = Dict(t => p.x for (p, t) in m.params)
merge(idict, pdict)
end
function (m::Exec)(args...)
retuple(run(m.session, m.output, params(m, args...)))
end
pullt!(_, xs) = shift!(xs)
pullt!(x::Tuple, xs) = map(x -> pullt!(x, xs), x)
# TODO: gradients don't work yet
# `gradients` lacks support for `grad_y`s and multiple `y`s
function Flux.back!(m::Exec, Δ, args...)
Δps = run(m.session, m.grads, params(m, args...))
Δin = pullt!(m.input, Δps)
for (p, Δ) in zip(keys(m.params), Δps)
p.Δx .+= Δ
end
Δin
end
function Flux.update!(m::Exec, η)
for p in keys(m.params)
update!(p, η)
end
return m
end
mutable struct Model
model::Any
exec::Exec
Model(model) = new(model)
end
tf(model) = Model(model)
function (m::Model)(args...)
args = mapt(x->Float32.(x), args)
isdefined(m, :exec) || (m.exec = makesession(m.model, args))
@tferr m.exec.stacks m.exec(args...)
end
Flux.back!(m::Model, Δ, args...) = back!(m.exec, Δ, args...)
Flux.update!(m::Model, η) = (update!(m.exec, η); m)
# Recurrent Models
using Flux: Stateful, SeqModel
tf(m::Stateful) = Stateful(tf(m.model), m.istate, m.ostate)
tf(m::SeqModel) = SeqModel(tf(m.model), m.steps)