Flux.jl/test/layers/normalisation.jl
Brad Safnuk 6653ec86d9 Allow multidimensional inputs to batchnorm.
Can be used in conjunction with convolutional layers, in addition
to dense layers, with the same api.
2018-03-15 21:48:59 -04:00

87 lines
1.9 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Flux: testmode!
@testset "Dropout" begin
x = [1.,2.,3.]
@test x == testmode!(Dropout(0.1))(x)
@test x == Dropout(0)(x)
@test zeros(x) == Dropout(1)(x)
x = rand(100)
m = Dropout(0.9)
y = m(x)
@test count(a->a==0, y) > 50
testmode!(m)
y = m(x)
@test count(a->a==0, y) == 0
testmode!(m, false)
y = m(x)
@test count(a->a==0, y) > 50
x = rand(100)
m = Chain(Dense(100,100),
Dropout(0.9))
y = m(x)
@test count(a->a == 0, y) > 50
testmode!(m)
y = m(x)
@test count(a->a == 0, y) == 0
end
@testset "BatchNorm" begin
let m = BatchNorm(2), x = param([1 2; 3 4; 5 6]')
@test m.β.data == [0, 0] # initβ(2)
@test m.γ.data == [1, 1] # initγ(2)
# initial m.σ is 1
# initial m.μ is 0
@test m.active
# @test m(x).data ≈ [-1 -1; 0 0; 1 1]'
m(x)
# julia> x
# 2×3 Array{Float64,2}:
# 1.0 3.0 5.0
# 2.0 4.0 6.0
#
# μ of batch will be
# (1. + 3. + 5.) / 3 = 3
# (2. + 4. + 6.) / 3 = 4
#
# ∴ update rule with momentum:
# .1 * 3 + 0 = .3
# .1 * 4 + 0 = .4
@test m.μ reshape([0.3, 0.4], 2, 1)
# julia> .1 .* std(x, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
# 2×1 Array{Float64,2}:
# 1.14495
# 1.14495
@test m.σ .1 .* std(x.data, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
testmode!(m)
@test !m.active
x = m(x).data
@test x[1] (1 - 0.3) / 1.1449489742783179
end
# with activation function
let m = BatchNorm(2, λ = σ), x = param([1 2; 3 4; 5 6]')
@test m.active
m(x)
testmode!(m)
@test !m.active
x = m(x).data
@test x[1] σ((1 - 0.3) / 1.1449489742783179)
end
let m = BatchNorm(2), x = param(reshape(1:12, 2, 2, 3))
y = reshape(permutedims(x, [2, 1, 3]), 2, 6)
y = permutedims(reshape(m(y), 2, 2, 3), [2, 1, 3])
@test m(x) == y
end
end