202 lines
6.8 KiB
Julia
202 lines
6.8 KiB
Julia
using NNlib: conv, ∇conv_data, depthwiseconv
|
||
|
||
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
|
||
|
||
expand(N, i::Tuple) = i
|
||
expand(N, i::Integer) = ntuple(_ -> i, N)
|
||
|
||
"""
|
||
Conv(size, in=>out)
|
||
Conv(size, in=>out, relu)
|
||
|
||
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
|
||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||
be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct Conv{N,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{N,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N} =
|
||
Conv(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
|
||
|
||
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||
Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ,
|
||
stride = stride, pad = pad, dilation = dilation)
|
||
|
||
@treelike Conv
|
||
|
||
function (c::Conv)(x::AbstractArray)
|
||
# TODO: breaks gpu broadcast :(
|
||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::Conv)
|
||
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
|
||
"""
|
||
ConvTranspose(size, in=>out)
|
||
ConvTranspose(size, in=>out, relu)
|
||
|
||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct ConvTranspose{N,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{N,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N} =
|
||
ConvTranspose(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
|
||
|
||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
|
||
stride = stride, pad = pad, dilation = dilation)
|
||
|
||
@treelike ConvTranspose
|
||
|
||
function (c::ConvTranspose)(x::AbstractArray)
|
||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
σ.(∇conv_data(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::ConvTranspose)
|
||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
"""
|
||
DepthwiseConv(size, in)
|
||
DepthwiseConv(size, in=>mul)
|
||
DepthwiseConv(size, in=>mul, relu)
|
||
|
||
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `mul` specify the number of input channels and channel multiplier respectively.
|
||
In case the `mul` is not specified it is taken as 1.
|
||
|
||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad` and `stride`.
|
||
"""
|
||
struct DepthwiseConv{N,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{N,Int}
|
||
end
|
||
|
||
DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0) where {T,N} =
|
||
DepthwiseConv(σ, w, b, expand.(sub2(Val(N)), (stride, pad))...)
|
||
|
||
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = glorot_uniform,
|
||
stride = 1, pad = 0) where N =
|
||
DepthwiseConv(param(init(k..., 1, ch)), param(zeros(ch)), σ,
|
||
stride = stride, pad = pad)
|
||
|
||
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform,
|
||
stride::NTuple{N,Integer} = map(_->1,k),
|
||
pad::NTuple{N,Integer} = map(_->0,k)) where N =
|
||
DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ,
|
||
stride = stride, pad = pad)
|
||
|
||
@treelike DepthwiseConv
|
||
|
||
function (c::DepthwiseConv)(x)
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
σ.(depthwiseconv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::DepthwiseConv)
|
||
print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
"""
|
||
MaxPool(k)
|
||
|
||
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
|
||
|
||
Takes the keyword arguments `pad` and `stride`.
|
||
"""
|
||
struct MaxPool{N}
|
||
k::NTuple{N,Int}
|
||
pad::NTuple{N,Int}
|
||
stride::NTuple{N,Int}
|
||
end
|
||
|
||
MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
|
||
MaxPool(k, expand(Val(N), pad), expand(Val(N), stride))
|
||
|
||
(m::MaxPool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride)
|
||
|
||
function Base.show(io::IO, m::MaxPool)
|
||
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||
end
|
||
|
||
"""
|
||
MeanPool(k)
|
||
|
||
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
|
||
|
||
Takes the keyword arguments `pad` and `stride`.
|
||
"""
|
||
struct MeanPool{N}
|
||
k::NTuple{N,Int}
|
||
pad::NTuple{N,Int}
|
||
stride::NTuple{N,Int}
|
||
end
|
||
|
||
MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
|
||
MeanPool(k, expand(Val(N), pad), expand(Val(N), stride))
|
||
|
||
(m::MeanPool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride)
|
||
|
||
function Base.show(io::IO, m::MeanPool)
|
||
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||
end
|