bayesiancnn-data-parsing/100_epoch_exp.jl

303 lines
8.7 KiB
Julia
Executable File

include("aux_func.jl")
using Statistics
using PlotlyJS
using PlotlyJS: savefig
folder = "exp_100_epochs/"
bayes_exp_1 = load_pickle("$(folder)bayes_exp_data_1.pkl")
bayes_exp_2 = load_pickle("$(folder)bayes_exp_data_2.pkl")
bayes_exp_3 = load_pickle("$(folder)bayes_exp_data_3.pkl")
bayes_exp_4 = load_pickle("$(folder)bayes_exp_data_4.pkl")
bayes_exp_5 = load_pickle("$(folder)bayes_exp_data_5.pkl")
bayes_all_mean_tloss =
(1 / 5) * (
bayes_exp_1[:, 2] +
bayes_exp_2[:, 2] +
bayes_exp_3[:, 2] +
bayes_exp_4[:, 2] +
bayes_exp_5[:, 2]
)
bayes_all_mean_iloss =
(1 / 5) * (
bayes_exp_1[:, 4] +
bayes_exp_2[:, 4] +
bayes_exp_3[:, 4] +
bayes_exp_4[:, 4] +
bayes_exp_5[:, 4]
)
bayes_all_mean_acc =
(1 / 5) * (
bayes_exp_1[:, 3] +
bayes_exp_2[:, 3] +
bayes_exp_3[:, 3] +
bayes_exp_4[:, 3] +
bayes_exp_5[:, 3]
)
bayes_all_mean_pre =
(1 / 5) * (
bayes_exp_1[:, 5] +
bayes_exp_2[:, 5] +
bayes_exp_3[:, 5] +
bayes_exp_4[:, 5] +
bayes_exp_5[:, 5]
)
b_exp_1_tls = bayes_exp_1[:, 2]
b_exp_1_acc = bayes_exp_1[:, 3]
b_exp_1_vls = bayes_exp_1[:, 4]
b_exp_1_pre = bayes_exp_1[:, 5]
println("Training accuracy bayes 1 $(mean(b_exp_1_acc))")
println("Testing accuracy bayes 1 $(mean(b_exp_1_pre))")
b_exp_2_tls = bayes_exp_2[:, 2]
b_exp_2_acc = bayes_exp_2[:, 3]
b_exp_2_vls = bayes_exp_2[:, 4]
b_exp_2_pre = bayes_exp_2[:, 5]
println("Training accuracy bayes 2 $(mean(b_exp_2_acc))")
println("Testing accuracy bayes 2 $(mean(b_exp_2_pre))")
b_exp_3_tls = bayes_exp_3[:, 2]
b_exp_3_acc = bayes_exp_3[:, 3]
b_exp_3_vls = bayes_exp_3[:, 4]
b_exp_3_pre = bayes_exp_3[:, 5]
println("Training accuracy bayes 3 $(mean(b_exp_3_acc))")
println("Testing accuracy bayes 3 $(mean(b_exp_3_pre))")
b_exp_4_tls = bayes_exp_4[:, 2]
b_exp_4_acc = bayes_exp_4[:, 3]
b_exp_4_vls = bayes_exp_4[:, 4]
b_exp_4_pre = bayes_exp_4[:, 5]
println("Training accuracy bayes 4 $(mean(b_exp_4_acc))")
println("Testing accuracy bayes 4 $(mean(b_exp_4_pre))")
b_exp_5_tls = bayes_exp_5[:, 2]
b_exp_5_acc = bayes_exp_5[:, 3]
b_exp_5_vls = bayes_exp_5[:, 4]
b_exp_5_pre = bayes_exp_5[:, 5]
println("Training accuracy bayes 5 $(mean(b_exp_5_acc))")
println("Testing accuracy bayes 5 $(mean(b_exp_5_pre))")
cnn_exp_1 = load_pickle("$(folder)freq_exp_data_1.pkl")
cnn_exp_2 = load_pickle("$(folder)freq_exp_data_2.pkl")
cnn_exp_3 = load_pickle("$(folder)freq_exp_data_3.pkl")
cnn_exp_4 = load_pickle("$(folder)freq_exp_data_4.pkl")
cnn_exp_5 = load_pickle("$(folder)freq_exp_data_5.pkl")
cnn_all_mean_tloss =
(1 / 5) * (
cnn_exp_1[:, 2] +
cnn_exp_2[:, 2] +
cnn_exp_3[:, 2] +
cnn_exp_4[:, 2] +
cnn_exp_5[:, 2]
)
cnn_all_mean_iloss =
(1 / 5) * (
cnn_exp_1[:, 4] +
cnn_exp_2[:, 4] +
cnn_exp_3[:, 4] +
cnn_exp_4[:, 4] +
cnn_exp_5[:, 4]
)
cnn_all_mean_acc =
(1 / 5) * (
cnn_exp_1[:, 3] +
cnn_exp_2[:, 3] +
cnn_exp_3[:, 3] +
cnn_exp_4[:, 3] +
cnn_exp_5[:, 3]
)
cnn_all_mean_pre =
(1 / 5) * (
cnn_exp_1[:, 5] +
cnn_exp_2[:, 5] +
cnn_exp_3[:, 5] +
cnn_exp_4[:, 5] +
cnn_exp_5[:, 5]
)
f_exp_1_tls = cnn_exp_1[:, 2]
f_exp_1_acc = cnn_exp_1[:, 3]
f_exp_1_vls = cnn_exp_1[:, 4]
f_exp_1_pre = cnn_exp_1[:, 5]
println("Training accuracy freq 1 $(mean(f_exp_1_acc))")
println("Testing accuracy freq 1 $(mean(f_exp_1_pre))")
f_exp_2_tls = cnn_exp_2[:, 2]
f_exp_2_acc = cnn_exp_2[:, 3]
f_exp_2_vls = cnn_exp_2[:, 4]
f_exp_2_pre = cnn_exp_2[:, 5]
println("Training accuracy freq 2 $(mean(f_exp_2_acc))")
println("Testing accuracy freq 2 $(mean(f_exp_2_pre))")
f_exp_3_tls = cnn_exp_3[:, 2]
f_exp_3_acc = cnn_exp_3[:, 3]
f_exp_3_vls = cnn_exp_3[:, 4]
f_exp_3_pre = cnn_exp_3[:, 5]
println("Training accuracy freq 3 $(mean(f_exp_3_acc))")
println("Testing accuracy freq 3 $(mean(f_exp_3_pre))")
f_exp_4_tls = cnn_exp_4[:, 2]
f_exp_4_acc = cnn_exp_4[:, 3]
f_exp_4_vls = cnn_exp_4[:, 4]
f_exp_4_pre = cnn_exp_4[:, 5]
println("Training accuracy freq 4 $(mean(f_exp_4_acc))")
println("Testing accuracy freq 4 $(mean(f_exp_4_pre))")
f_exp_5_tls = cnn_exp_5[:, 2]
f_exp_5_acc = cnn_exp_5[:, 3]
f_exp_5_vls = cnn_exp_5[:, 4]
f_exp_5_pre = cnn_exp_5[:, 5]
println("Training accuracy freq 5 $(mean(f_exp_5_acc))")
println("Testing accuracy freq 5 $(mean(f_exp_5_pre))")
en_plot = plot(
[
scatter(
y = f_exp_1_acc,
name = "LeNet 1",
marker = attr(color = "rgb(211,120,000)"),
),
scatter(
y = f_exp_2_acc,
name = "LeNet 2",
marker = attr(color = "rgb(255,170,017)"),
),
scatter(
y = f_exp_3_acc,
name = "LeNet 3",
marker = attr(color = "rgb(255,187,034)"),
),
scatter(
y = f_exp_4_acc,
name = "LeNet 4",
marker = attr(color = "rgb(255,204,051)"),
),
scatter(
y = f_exp_5_acc,
name = "LeNet 5",
marker = attr(color = "rgb(255,221,068)"),
),
scatter(
y = b_exp_1_acc,
name = "BCNN 1",
marker = attr(color = "rgb(055,033,240)"),
),
scatter(
y = b_exp_2_acc,
name = "BCNN 2",
marker = attr(color = "rgb(033,081,240)"),
),
scatter(
y = b_exp_3_acc,
name = "BCNN 3",
marker = attr(color = "rgb(033,115,240)"),
),
scatter(
y = b_exp_4_acc,
name = "BCNN 4",
marker = attr(color = "rgb(151,177,255)"),
),
scatter(
y = b_exp_5_acc,
name = "BCNN 5",
marker = attr(color = "rgb(051,215,255)"),
),
],
Layout(
mode = "lines",
opacity = 0.4,
xaxis_tickangle = -45,
yaxis_title_text = "Accuracy",
xaxis_title_text = "Epoch";
yaxis_range = [0, 1],
),
)
savefig(en_plot, "mnist_100_tacc.png")
#=
en_plot = plot([
scatter(y=f_exp_1_pre, name="LeNet 1", marker=attr(color="rgb(211,120,000)")),
scatter(y=f_exp_2_pre, name="LeNet 2", marker=attr(color="rgb(255,170,017)")),
scatter(y=f_exp_3_pre, name="LeNet 3", marker=attr(color="rgb(255,187,034)")),
scatter(y=f_exp_4_pre, name="LeNet 4", marker=attr(color="rgb(255,204,051)")),
scatter(y=f_exp_5_pre, name="LeNet 5", marker=attr(color="rgb(255,221,068)")),
scatter(y=b_exp_1_pre, name="BCNN 1", marker=attr(color="rgb(055,033,240)")),
scatter(y=b_exp_2_pre, name="BCNN 2", marker=attr(color="rgb(033,081,240)")),
scatter(y=b_exp_3_pre, name="BCNN 3", marker=attr(color="rgb(033,115,240)")),
scatter(y=b_exp_4_pre, name="BCNN 4", marker=attr(color="rgb(151,177,255)")),
scatter(y=b_exp_5_pre, name="BCNN 5", marker=attr(color="rgb(051,215,255)"))
], Layout(mode="lines", opacity=0.4, xaxis_tickangle=-45, yaxis_title_text="Accuracy",
xaxis_title_text="Epoch", title="100 Epoch Experiment Testing Accuracy";yaxis_range=[0, 1] ))
savefig(en_plot,"mnist_100_tpre.png")
=#
en_plot = plot(
[
scatter(
y = f_exp_1_pre,
name = "LeNet 1",
marker = attr(color = "rgb(211,120,000)"),
),
scatter(
y = f_exp_2_pre,
name = "LeNet 2",
marker = attr(color = "rgb(255,170,017)"),
),
scatter(
y = f_exp_3_pre,
name = "LeNet 3",
marker = attr(color = "rgb(255,187,034)"),
),
scatter(
y = f_exp_4_pre,
name = "LeNet 4",
marker = attr(color = "rgb(255,204,051)"),
),
scatter(
y = f_exp_5_pre,
name = "LeNet 5",
marker = attr(color = "rgb(255,221,068)"),
),
scatter(
y = b_exp_1_pre,
name = "BCNN 1",
marker = attr(color = "rgb(055,033,240)"),
),
scatter(
y = b_exp_2_pre,
name = "BCNN 2",
marker = attr(color = "rgb(033,081,240)"),
),
scatter(
y = b_exp_3_pre,
name = "BCNN 3",
marker = attr(color = "rgb(033,115,240)"),
),
scatter(
y = b_exp_4_pre,
name = "BCNN 4",
marker = attr(color = "rgb(151,177,255)"),
),
scatter(
y = b_exp_5_pre,
name = "BCNN 5",
marker = attr(color = "rgb(051,215,255)"),
),
],
Layout(
mode = "lines",
opacity = 0.4,
xaxis_tickangle = -45,
yaxis_title_text = "Accuracy",
xaxis_title_text = "Epoch";
yaxis_range = [0, 1],
),
)
savefig(en_plot, "mnist_100_tpre.png")