Flux.jl/src/optimise/interface.jl

85 lines
2.8 KiB
Julia
Raw Normal View History

2017-09-01 21:06:51 +00:00
call(f, xs...) = f(xs...)
2017-10-12 08:31:38 +00:00
# note for optimisers: set to zero
# p.Δ at the end of the weigths update
2017-09-03 21:10:04 +00:00
function optimiser(ps, fs...)
ps = [Param(p) for p in ps]
2017-09-01 21:06:51 +00:00
fs = map(ps) do p
os = map(f -> f(p), fs)
() -> foreach(call, os)
end
() -> foreach(call, fs)
end
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
SGD(params, η = 0.1; decay = 0)
2017-10-18 11:07:43 +00:00
2017-10-12 08:31:38 +00:00
Classic gradient descent optimiser with learning rate `η`.
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
2017-10-18 11:07:43 +00:00
2017-10-12 08:31:38 +00:00
Supports inverse decaying learning rate if the `decay` argument is provided.
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
SGD(ps, η = 0.1; decay = 0) =
optimiser(ps, p -> invdecay(p, decay), p -> descent(p,η))
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
Momentum(params, η = 0.01; ρ = 0.9, decay = 0)
2017-10-18 11:07:43 +00:00
2017-10-12 08:31:38 +00:00
SGD with learning rate `η`, momentum `ρ` and optional learning rate inverse decay.
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
Momentum(ps, η = 0.01; ρ = 0.9, decay = 0) =
optimiser(ps, p->invdecay(p,decay), p->momentum(p, ρ, η), p->descent(p,1))
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)
2017-10-18 11:07:43 +00:00
2017-10-12 08:31:38 +00:00
SGD with learning rate `η`, Nesterov momentum `ρ` and optional learning rate inverse decay.
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
Nesterov(ps, η = 0.01; ρ = 0.9, decay = 0) =
optimiser(ps, p->invdecay(p,decay), p->nesterov(p, ρ, η), p->descent(p,1))
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
RMSProp(params, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0)
2017-10-18 11:07:43 +00:00
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
optimiser. Parameters other than learning rate don't need tuning. Often a good
choice for recurrent networks.
"""
2017-10-18 16:07:49 +00:00
RMSProp(ps, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) =
2017-10-12 08:31:38 +00:00
optimiser(ps, p->rmsprop(p; η=η, ρ=ρ, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
2017-10-18 11:07:43 +00:00
"""
2017-12-04 08:34:27 +00:00
ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
2017-10-18 11:07:43 +00:00
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
2017-10-18 16:44:21 +00:00
ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
2017-10-12 08:31:38 +00:00
optimiser(ps, p->adam(p; η=η, β1=β1, β2=β2, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
ADAGrad(params, η = 0.01; ϵ = 1e-8, decay = 0)
2017-10-18 11:07:43 +00:00
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
"""
2017-10-12 08:31:38 +00:00
ADAGrad(ps, η = 0.01; ϵ = 1e-8, decay = 0) =
optimiser(ps, p->adagrad(p; η=η, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
2017-10-18 11:07:43 +00:00
"""
2017-10-12 08:31:38 +00:00
ADADelta(params; ρ = 0.9, ϵ = 1e-8, decay = 0)
2017-10-18 11:07:43 +00:00
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning.
"""
2017-10-12 08:31:38 +00:00
ADADelta(ps; ρ = 0.9, ϵ = 1e-8, decay = 0) =
optimiser(ps, p->adadelta(p; ρ=ρ, ϵ=ϵ), p->descent(p,1))
2017-12-04 08:17:05 +00:00
2017-12-04 08:34:27 +00:00
"""
AMSGrad(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
2017-12-04 08:17:05 +00:00
2017-12-04 08:34:27 +00:00
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
tuning.
"""
AMSGrad(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
optimiser(ps, p -> amsgrad(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))