Flux.jl/src/layers/conv.jl

95 lines
2.7 KiB
Julia
Raw Normal View History

2018-02-26 22:43:07 +00:00
using NNlib: conv
2018-06-26 13:05:07 +00:00
@generated sub2(::Type{Val{N}}) where N = :(Val{$(N-2)})
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
2018-04-15 15:02:40 +00:00
2017-12-18 18:05:48 +00:00
"""
2018-02-26 22:43:07 +00:00
Conv(size, in=>out)
Conv(size, in=>out, relu)
2017-12-18 18:05:48 +00:00
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
2018-02-16 00:06:15 +00:00
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
2017-12-18 18:05:48 +00:00
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
2017-12-18 18:05:48 +00:00
"""
2018-02-26 22:43:07 +00:00
struct Conv{N,F,A,V}
2017-12-15 13:22:57 +00:00
σ::F
weight::A
2018-02-15 20:15:41 +00:00
bias::V
2018-02-26 22:43:07 +00:00
stride::NTuple{N,Int}
pad::NTuple{N,Int}
dilation::NTuple{N,Int}
2017-12-15 13:22:57 +00:00
end
2018-06-26 13:05:07 +00:00
Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} =
Conv(σ, w, b, expand.(sub2(Val{N}), (stride, pad, dilation))...)
2018-02-15 20:52:29 +00:00
2018-02-26 22:43:07 +00:00
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
stride = 1, pad = 0, dilation = 1) where N =
2018-02-26 22:43:07 +00:00
Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ,
stride = stride, pad = pad, dilation = dilation)
2017-12-15 13:22:57 +00:00
2018-02-26 22:43:07 +00:00
Flux.treelike(Conv)
2017-12-15 13:22:57 +00:00
2018-02-26 22:43:07 +00:00
function (c::Conv)(x)
2018-02-28 23:06:53 +00:00
# TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
2018-02-26 22:43:07 +00:00
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
2018-02-15 20:15:41 +00:00
end
2017-12-15 16:24:45 +00:00
2018-02-26 22:43:07 +00:00
function Base.show(io::IO, l::Conv)
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
2017-12-15 16:24:45 +00:00
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
2018-07-31 16:10:53 +00:00
"""
Maxpool(k)
Maxpooling layer. `k` stands for the size of the window for each dimension of the input.
Takes the keyword arguments `pad` and `stride`.
"""
struct Maxpool{N}
k::NTuple{N,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
Maxpool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride)
end
(m::Maxpool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::Maxpool)
print(io, "Maxpool(", m.k, ", ", m.pad, ", ", m.stride, ")")
end
"""
Meanpool(k)
Meanpooling layer. `k` stands for the size of the window for each dimension of the input.
Takes the keyword arguments `pad` and `stride`.
"""
struct Meanpool{N}
k::NTuple{N,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
Meanpool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride)
end
(m::Meanpool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::Meanpool)
print(io, "Meanpool(", m.k, ", ", m.pad, ", ", m.stride, ")")
end