Flux.jl/test/optimise.jl

56 lines
1.3 KiB
Julia
Raw Normal View History

2017-10-12 08:31:38 +00:00
using Flux.Optimise
2018-11-08 13:14:57 +00:00
using Flux.Optimise: runall
2017-10-12 08:31:38 +00:00
using Flux.Tracker
2018-08-11 12:54:59 +00:00
using Test
2017-10-12 08:31:38 +00:00
@testset "Optimise" begin
2017-12-08 17:10:29 +00:00
w = randn(10, 10)
2019-02-28 14:58:42 +00:00
@testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
NADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
Momentum()]
2018-09-14 15:02:56 +00:00
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
for t = 1: 10^5
2019-02-28 14:58:42 +00:00
θ = Params([w])
θ̄ = gradient(() -> loss(rand(10)), θ)
Optimise.update!(opt, θ, θ̄)
2018-09-14 15:02:56 +00:00
end
@test Flux.mse(w, w) < 0.01
2017-12-08 17:10:29 +00:00
end
2017-10-12 08:31:38 +00:00
end
2017-12-13 18:24:56 +00:00
2018-10-11 04:37:16 +00:00
@testset "Optimiser" begin
2018-09-16 12:04:51 +00:00
w = randn(10, 10)
2018-10-27 13:56:42 +00:00
@testset for Opt in [InvDecay, WeightDecay, ExpDecay]
2018-09-16 12:04:51 +00:00
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
2018-10-11 04:37:16 +00:00
opt = Optimiser(Opt(), ADAM(0.001))
2018-09-16 12:04:51 +00:00
for t = 1:10^5
l = loss(rand(10))
back!(l)
2019-01-28 13:59:23 +00:00
delta = Optimise.apply!(opt, w.data, w.grad)
2018-09-16 12:04:51 +00:00
w.data .-= delta
end
@test Flux.mse(w, w) < 0.01
2018-09-16 12:15:29 +00:00
end
2018-09-16 12:04:51 +00:00
end
2017-12-13 18:24:56 +00:00
@testset "Training Loop" begin
i = 0
l = param(1)
Flux.train!(() -> (sleep(0.1); i += 1; l),
2018-10-31 14:58:55 +00:00
(),
2017-12-13 18:24:56 +00:00
Iterators.repeated((), 100),
2018-10-31 14:58:55 +00:00
Descent(),
2018-09-11 13:00:24 +00:00
cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
2017-12-13 18:24:56 +00:00
@test 3 < i < 50
2018-11-08 13:14:57 +00:00
# Test multiple callbacks
x = 0
fs = [() -> (), () -> x = 1]
cbs = runall(fs)
cbs()
@test x == 1
2017-12-13 18:24:56 +00:00
end