Support for array operations on other hardware backends, like GPUs, is provided by external packages like [CuArrays](https://github.com/JuliaGPU/CuArrays.jl). Flux is agnostic to array types, so we simply need to move model weights and data to the GPU and Flux will handle it.
(Note that you need to have CUDA available to use CuArrays – please see the [CuArrays.jl (https://github.com/JuliaGPU/CuArrays.jl) instructions for more details.)
Note that we convert both the parameters (`W`, `b`) and the data set (`x`, `y`) to cuda arrays. Taking derivatives and training works exactly as before.
If you define a structured model, like a `Dense` layer or `Chain`, you just need to convert the internal parameters. Flux provides `mapleaves`, which allows you to alter all parameters of a model at once.
As a convenience, Flux provides the `gpu` function to convert models and data to the GPU if one is available. By default, it'll do nothing, but loading `CuArrays` will cause it to move data to the GPU instead.