Flux.jl/src/tracker/array.jl

419 lines
15 KiB
Julia
Raw Normal View History

struct TrackedArray{T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N}
tracker::Tracked{A}
data::A
grad::A
TrackedArray{T,N,A}(t::Tracked{A}, data::A) where {T,N,A} = new(t, data)
TrackedArray{T,N,A}(t::Tracked{A}, data::A, grad::A) where {T,N,A} = new(t, data, grad)
end
tracker(x::TrackedArray) = x.tracker
TrackedVector{T,A} = TrackedArray{T,1,A}
TrackedMatrix{T,A} = TrackedArray{T,2,A}
TrackedVecOrMat{T,A} = Union{TrackedVector{T,A},TrackedMatrix{T,A}}
2018-02-07 20:39:36 +00:00
track(c::Call, x::AbstractArray) = TrackedArray(c, x)
TrackedArray(c::Call, x::A) where A <: AbstractArray =
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, x), x)
TrackedArray(c::Call, x::A, Δ::A) where A <: AbstractArray =
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, x, Δ), x, Δ)
TrackedArray(x::AbstractArray) = TrackedArray(Call(nothing), x, zeros(x))
2018-02-13 10:20:38 +00:00
Base.eltype(x::Type{<:TrackedArray{T}}) where T <: Real = TrackedReal{T}
Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
print(io, "TrackedArray{…,$A}")
function Base.showarray(io::IO, X::TrackedArray, repr::Bool = true; header = true)
if repr
print(io, "param(")
Base.showarray(io, data(X), true)
print(io, ")")
else
header && print(io, "Tracked ")
Base.showarray(io, data(X), false, header = header)
end
end
Base.setindex!(xs::TrackedArray, v, i...) =
error("Can't differentiate `setindex!`")
2018-04-30 11:09:15 +00:00
back!(::TrackedArray) = error("Value is not scalar; use `back!(sum(x))` or `back!(x, Δ)`")
2018-02-07 20:39:36 +00:00
# Fallthrough methods
for f in :[Base.size, Base.ndims].args
@eval @inline $f(x::TrackedArray, a...) = $f(data(x), a...)
end
Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
similar(data(x), dims...)
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
2018-02-07 20:39:36 +00:00
Base.:(==)(x::TrackedArray, y) = data(x) == y
Base.:(==)(y, x::TrackedArray) = y == data(x)
Base.:(==)(x::TrackedArray, y::TrackedArray) = data(x) == data(y)
# Array Stdlib
2018-02-07 20:39:36 +00:00
Base.getindex(xs::TrackedArray, i...) = track(getindex, xs, i...)
2017-08-19 09:14:50 +00:00
2017-09-07 03:09:32 +00:00
function back(::typeof(getindex), Δ, xs::TrackedArray, i...)
2017-09-07 01:21:35 +00:00
Δ′ = zeros(xs.data)
2018-02-07 20:39:36 +00:00
Δ′[i...] = Δ
2017-09-07 03:09:32 +00:00
@back(xs, Δ′)
2017-08-19 15:02:19 +00:00
end
2018-02-07 20:39:36 +00:00
Base.:-(xs::TrackedArray) = track(-, xs)
2017-08-19 15:02:19 +00:00
2017-09-07 03:09:32 +00:00
back(::typeof(-), Δ, xs::TrackedArray) = back(xs, -Δ)
2017-08-23 16:50:43 +00:00
2018-02-07 20:39:36 +00:00
Base.transpose(xs::TrackedArray) = track(transpose, xs)
Base.ctranspose(xs::TrackedArray) = track(ctranspose, xs)
2017-09-01 15:42:18 +00:00
2017-09-07 03:09:32 +00:00
back(::typeof(transpose), Δ, xs) = @back(xs, trim(xs, Δ.'))
back(::typeof(ctranspose), Δ, xs) = @back(xs, trim(xs, Δ'))
2017-09-03 21:10:23 +00:00
2018-02-07 20:39:36 +00:00
Base.repmat(x::TrackedVecOrMat, a::Integer...) = track(repmat, x, a...)
Base.repmat(x::TrackedVecOrMat, a::Int64...) = track(repmat, x, a...)
2017-09-05 06:12:53 +00:00
2018-03-07 12:40:00 +00:00
function back(::typeof(repmat), Δ, xs::TrackedVecOrMat, m, n=1)
Δ′ = similar(xs.data)
S = size(xs.data)
for (i,v) in enumerate(Δ)
d1 = divrem(i-1, S[1]*m)
x = d1[2] % S[1]+1
y = d1[1] % S[2]+1
Δ′[x, y] += v
end
back(xs, Δ′)
end
_repeat(A, inner, outer) = Base.repeat(A; inner=inner, outer=outer)
Base.repeat(A::TrackedArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A))) = track(_repeat, A, inner, outer)
function back(::typeof(_repeat), Δ, xs::TrackedArray, inner, outer)
Δ′ = similar(xs.data)
Δ′ .= 0
S = size(xs.data)
# Loop through each element of Δ, calculate source dimensions, accumulate into Δ′
for (dest_idx, val) in enumerate(IndexCartesian(), Δ)
# First, round dest_idx[dim] to nearest gridpoint defined by inner[dim], then
# wrap around based on original size S.
src_idx = [mod1(div(dest_idx[dim] - 1, inner[dim]) + 1, S[dim]) for dim in 1:length(S)]
Δ′[src_idx...] += val
end
back(xs, Δ′)
end
for f in [:vcat, :hcat]
@eval begin
2018-05-07 12:03:52 +00:00
# This section is a bit of a hack since julia doesn't have a standardised
# promotion mechanism for concatenation yet
# https://github.com/JuliaLang/julia/pull/20815
2018-05-07 12:03:52 +00:00
# It should support tracked concatenation with rank ∈ (1,2) with a
# TrackedArray anywhere among the arguments This works as long as base has
# other functions that captures `(::Union{Vector,RowVector,Matrix}...)`.
2018-05-02 12:57:32 +00:00
Base.$f(a::Union{TrackedArray,Vector,RowVector,Matrix}...) = track($f, a...)
2018-05-07 12:03:52 +00:00
# It should support tracked concatenation with rank>2 if the TrackedArray is
# first
2018-05-02 12:57:32 +00:00
Base.$f(a::TrackedArray, b::AbstractArray...) = track($f, a, b...)
Base.$f(a::TrackedArray, b::Union{TrackedArray,Vector,RowVector,Matrix}...) = track($f, a, b...) # resolves ambiguity introduced by previous row
2018-05-07 12:03:52 +00:00
# It should support tracked concatenation with rank>2 if the TrackedArray is
# second
2018-05-02 12:57:32 +00:00
Base.$f(a::Array, b::TrackedArray, c::AbstractArray...) = track($f, a, b, c...)
2018-05-07 12:03:52 +00:00
Base.$f(a::Union{Vector,RowVector,Matrix}, b::TrackedArray,
c::Union{TrackedArray,Vector,RowVector,Matrix}...) =
track($f, a, b, c...) # resolves ambiguity introduced by previous row
end
end
2017-12-08 15:10:09 +00:00
function back(::typeof(vcat), Δ, xs...)
start = 0
for xsi in xs
2018-05-02 06:30:11 +00:00
i = map(_ -> :, size(xsi)) |> Base.tail
2017-12-08 15:10:09 +00:00
@back(xsi, Δ[start+1:start+size(xsi,1), i...])
start += size(xsi, 1)
end
2017-09-05 06:11:28 +00:00
end
2018-05-02 13:56:08 +00:00
function back(::typeof(hcat), Δ, xs...)
start = 0
for xsi in xs
if ndims(xsi) == 1
@back(xsi, Δ[:, start+1])
else
2018-05-02 06:30:11 +00:00
i = map(_ -> :, size(xsi)) |> Base.tail |> Base.tail
2018-05-02 13:56:08 +00:00
@back(xsi, Δ[:, start+1:start+size(xsi,2), i...])
end
start += size(xsi, 2)
end
end
2018-05-02 12:57:32 +00:00
Base.cat(dims, a::TrackedArray, b::AbstractArray...) = track(cat, dims, a, b...)
Base.cat(dims, a::Union{RowVector,Array}, b::TrackedArray, c::AbstractArray...) = track(cat, dims, a, b, c...)
function back(::typeof(cat), Δ, dims, Xs...)
start = ntuple(i -> 0, Val{ndims(Δ)})
for xs in Xs
dim_xs = 1:ndims(xs)
till_xs = ntuple((i -> i in dims ? (i in dim_xs ? size(xs,i) : 1) : 0), Val{ndims(Δ)})
xs_in_Δ = ntuple(i -> till_xs[i] > 0 ? (start[i]+1:start[i]+till_xs[i]) : Colon(), Val{ndims(Δ)})
@back(xs, reshape(Δ[xs_in_Δ...],size(xs)))
start = start .+ till_xs
2018-05-02 13:56:08 +00:00
end
end
2018-04-02 20:09:57 +00:00
Base.reshape(xs::TrackedArray, dims::Union{Colon,Int64}...) = reshape(xs, dims)
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Union{Int64,Colon}}}) = reshape(xs, Base._reshape_uncolon(xs, dims))
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Int64}}) = track(reshape, xs, dims)
2017-12-15 16:18:16 +00:00
back(::typeof(reshape), Δ, xs::TrackedArray, _...) =
back(xs, reshape(Δ, size(xs)))
2018-02-28 02:19:58 +00:00
Base.permutedims(xs::TrackedArray, dims) = track(permutedims, xs, dims)
back(::typeof(permutedims), Δ, xs::TrackedArray, dims) = back(xs, permutedims(Δ, invperm(dims)))
2018-02-16 14:15:40 +00:00
function _kron(mat1::AbstractMatrix,mat2::AbstractMatrix)
m1, n1 = size(mat1)
mat1_rsh = reshape(mat1,(1,m1,1,n1))
m2, n2 = size(mat2)
mat2_rsh = reshape(mat2,(m2,1,n2,1))
return reshape(mat1_rsh.*mat2_rsh, (m1*m2,n1*n2))
end
2018-02-16 14:15:40 +00:00
Base.kron(a::TrackedMatrix, b::TrackedMatrix) = _kron(a, b)
Base.kron(a::TrackedMatrix, b::AbstractMatrix) = _kron(a, b)
Base.kron(a::AbstractMatrix, b::TrackedMatrix) = _kron(a, b)
2017-08-22 11:24:08 +00:00
# Reductions
2018-02-07 20:39:36 +00:00
Base.sum(xs::TrackedArray, dim) = track(sum, xs, dim)
Base.sum(xs::TrackedArray) = track(sum, xs)
2018-02-09 19:00:26 +00:00
Base.sum(f::Union{Function,Type},xs::TrackedArray) = sum(f.(xs))
2017-08-22 11:24:08 +00:00
2017-09-07 03:09:32 +00:00
back(::typeof(sum), Δ, xs::TrackedArray, dim...) = back(xs, similar(xs.data) .= Δ)
2017-08-22 11:24:08 +00:00
2018-03-06 10:01:19 +00:00
Base.prod(xs::TrackedArray, dim) = track(prod, xs, dim)
Base.prod(xs::TrackedArray) = track(prod, xs)
Base.prod(f::Union{Function, Type}, xs::TrackedArray) = prod(f.(xs))
back(::typeof(prod), Δ, xs::TrackedArray, dim...) = back(xs, similar(xs.data) .= (prod(xs.data, dim...) ./ xs.data) .* Δ)
back(::typeof(prod), Δ, xs::TrackedArray) = back(xs, similar(xs.data) .= (reshape(.*(circshift.([reshape(xs.data, length(xs.data))], 1:length(xs.data)-1)...), size(xs.data))) .* Δ)
2018-03-06 10:01:19 +00:00
2017-09-07 01:21:35 +00:00
Base.findfirst(xs::TrackedArray, args...) = findfirst(xs.data, args...)
2017-09-02 03:33:05 +00:00
2018-02-07 20:39:36 +00:00
Base.mean(xs::TrackedArray) = track(mean, xs)
Base.mean(xs::TrackedArray, region) = track(mean, xs, region)
Base.maximum(xs::TrackedArray) = track(maximum, xs)
Base.maximum(xs::TrackedArray, region) = track(maximum, xs, region)
Base.minimum(xs::TrackedArray) = track(minimum, xs)
Base.minimum(xs::TrackedArray, region) = track(minimum, xs, region)
2018-02-07 20:39:36 +00:00
LinAlg.dot(xs::TrackedVector, ys::TrackedVector) = track(dot, xs, ys)
LinAlg.dot(xs::AbstractVector, ys::TrackedVector) = track(dot, xs, ys)
LinAlg.dot(xs::TrackedVector, ys::AbstractVector) = track(dot, xs, ys)
2017-12-12 17:23:15 +00:00
function back(::typeof(dot), Δ, xs, ys)
2018-02-13 13:31:35 +00:00
@back(xs, Δ.*data(ys))
@back(ys, Δ.*data(xs))
2017-12-12 17:23:15 +00:00
end
2017-11-21 16:04:04 +00:00
# Hacks to get std working
Base.std(x::TrackedArray; mean = Base.mean(x)) =
sqrt.(sum((x .- mean).^2) ./ (length(x)-1))
Base.std(x::TrackedArray, dim; mean = Base.mean(x, dim)) =
sqrt.(sum((x .- mean).^2, dim) ./ (size(x, dim)-1))
2018-03-05 17:24:46 +00:00
Base.vecnorm(x::TrackedArray, p::Real = 2) =
sum(abs.(x).^p .+ eps(0f0))^(1/p) # avoid d(sqrt(x))/dx == Inf at 0
2018-02-09 19:00:26 +00:00
2017-10-31 10:41:44 +00:00
back(::typeof(mean), Δ, xs::TrackedArray) = back(xs, similar(xs.data) .= Δ ./ length(xs.data))
back(::typeof(mean), Δ, xs::TrackedArray, region) =
back(xs, similar(xs.data) .= Δ ./ prod(size(xs.data, region...)))
function back(::typeof(maximum), Δ, xs::TrackedArray)
Δ′ = zeros(xs.data)
_, i = findmax(xs.data)
Δ′[i] = Δ
@back(xs, Δ′)
end
function back(::typeof(maximum), Δ, xs::TrackedArray, region)
Δ′ = zeros(xs.data)
_, is = findmax(xs.data, region)
Δ′[is] = Δ
@back(xs, Δ′)
end
function back(::typeof(minimum), Δ, xs::TrackedArray)
Δ′ = zeros(xs.data)
_, i = findmin(xs.data)
Δ′[i] = Δ
@back(xs, Δ′)
end
function back(::typeof(minimum), Δ, xs::TrackedArray, region)
Δ′ = zeros(xs.data)
_, is = findmin(xs.data, region)
Δ′[is] = Δ
@back(xs, Δ′)
end
2017-08-22 11:24:08 +00:00
# BLAS
2018-02-07 20:39:36 +00:00
Base.diagm(x::TrackedVector) = track(diagm, x)
2018-02-05 18:29:35 +00:00
back(::typeof(diagm), Δ, x) = @back(x, diag(Δ))
2017-12-12 17:07:39 +00:00
for f in :[*, Ac_mul_B, A_mul_Bc].args
2017-11-08 22:00:19 +00:00
@eval begin
import Base.$f
2018-02-07 20:39:36 +00:00
$f(a::TrackedMatrix, b::TrackedMatrix) = track($f, a, b)
$f(a::TrackedMatrix, b::AbstractMatrix) = track($f, a, b)
$f(a::AbstractMatrix, b::TrackedMatrix) = track($f, a, b)
2017-11-08 22:00:19 +00:00
2018-02-07 20:39:36 +00:00
$f(a::TrackedMatrix, b::TrackedVector) = track($f, a, b)
$f(a::TrackedMatrix, b::AbstractVector) = track($f, a, b)
$f(a::AbstractMatrix, b::TrackedVector) = track($f, a, b)
2017-11-08 22:00:19 +00:00
2018-02-07 20:39:36 +00:00
$f(a::TrackedVector, b::TrackedVector) = track($f, a, b)
$f(a::TrackedVector, b::AbstractVector) = track($f, a, b)
$f(a::AbstractVector, b::TrackedVector) = track($f, a, b)
2017-11-08 22:00:19 +00:00
end
end
2017-08-20 12:48:43 +00:00
2017-09-07 03:09:32 +00:00
function back(::typeof(*), Δ, a::AbstractMatrix, b::AbstractVecOrMat)
@back(a, A_mul_Bt(Δ, data(b)))
@back(b, At_mul_B(data(a), Δ))
2017-08-19 15:02:19 +00:00
end
2017-11-08 22:00:19 +00:00
function back(::typeof(Ac_mul_B), Δ, a::AbstractVecOrMat{<:Real}, b::AbstractVecOrMat{<:Real})
@back(a, A_mul_Bt(Δ, data(b))')
2017-12-12 17:07:39 +00:00
@back(b, data(a)*Δ)
end
function back(::typeof(A_mul_Bc), Δ, a::AbstractVecOrMat{<:Real}, b::AbstractVecOrMat{<:Real})
@back(a, Δ * data(b))
@back(b, At_mul_B(data(a), Δ)')
2017-11-08 22:00:19 +00:00
end
2017-11-07 19:34:27 +00:00
# Fast path for matrix-vector
function back(::typeof(*), Δ::AbstractVector, W::TrackedMatrix, x::AbstractVector)
if isleaf(W)
W.grad .+= Δ .* data(x).'
else
back(W, A_mul_Bt(Δ, data(x)))
end
@back(x, At_mul_B(data(W), Δ))
end
2017-08-23 01:03:17 +00:00
# NNlib
2017-12-14 18:48:38 +00:00
using NNlib
2018-02-26 22:43:07 +00:00
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool
2017-08-23 01:03:17 +00:00
2018-02-07 20:39:36 +00:00
softmax(xs::TrackedArray) = track(softmax, xs)
2017-08-23 01:03:17 +00:00
2017-09-07 03:09:32 +00:00
back(::typeof(softmax), Δ, xs) = @back(xs, ∇softmax(Δ, data(xs)))
2017-08-23 01:03:17 +00:00
2018-02-07 20:39:36 +00:00
logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
back(::typeof(logsoftmax), Δ, xs) = @back(xs, ∇logsoftmax(Δ, data(xs)))
2017-12-18 18:05:38 +00:00
# TODO: can store kwargs efficiently in namedtuples
_conv(x, w, stride, pad, dilation) = conv(x, w, stride = stride, pad = pad, dilation = dilation)
conv(x::TrackedArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0, dilation = 1) where N =
track(_conv, x, w, stride, pad, dilation)
conv(x::AbstractArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0, dilation = 1) where N =
track(_conv, x, w, stride, pad, dilation)
conv(x::TrackedArray{<:Real,N}, w::AbstractArray{<:Real,N}; stride = 1, pad = 0, dilation = 1) where N =
track(_conv, x, w, stride, pad, dilation)
function back(::typeof(_conv), Δ, x, w, stride, pad, dilation)
@back(x, NNlib.∇conv_data(Δ, data(x), data(w); stride = stride, pad = pad, dilation = dilation))
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad, dilation = dilation))
2017-12-14 18:48:38 +00:00
end
2018-03-19 19:42:04 +00:00
_maxpool(x, k, pad, stride) = maxpool(x, k; pad = pad, stride = stride)
2017-12-15 02:29:14 +00:00
2018-03-19 19:42:04 +00:00
maxpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
track(_maxpool, x, k, pad, stride)
2017-12-15 02:29:14 +00:00
2018-03-19 19:42:04 +00:00
back_(::typeof(_maxpool), y, Δ, x, k, pad, stride) =
back(x, NNlib.∇maxpool(Δ, y, data(x), k, pad=pad, stride=stride))
2018-02-26 22:43:07 +00:00
2018-03-19 19:42:04 +00:00
_meanpool(x, k, pad, stride) = meanpool(x, k; pad = pad, stride = stride)
2018-02-26 22:43:07 +00:00
2018-03-19 19:42:04 +00:00
meanpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
track(_meanpool, x, k, pad, stride)
2018-02-26 22:43:07 +00:00
2018-03-19 19:42:04 +00:00
back_(::typeof(_meanpool), y, Δ, x, k, pad, stride) =
back(x, NNlib.∇meanpool(Δ, y, data(x), k, pad=pad, stride=stride))
2017-12-15 02:29:14 +00:00
2017-08-19 15:02:19 +00:00
# Broadcasting
using ForwardDiff: Dual, partials
2018-02-05 17:22:09 +00:00
struct Broadcasted{F,T}
f::F
2017-08-19 15:02:19 +00:00
data::T
end
(b::Broadcasted)(xs...) = map(x -> x.value, b.data)
dualify(xs, n) = xs
2017-08-21 15:35:39 +00:00
dualify(xs::TrackedArray, ps) = map(x -> Dual(x, ps), data(xs))
2018-02-08 17:18:40 +00:00
dualify(xs::TrackedReal, ps) = Dual(data(xs), ps)
2017-08-19 15:02:19 +00:00
function tracked_broadcast(f, args::Vararg{Any,N}) where N
2017-08-20 12:35:20 +00:00
dargs = map((x,i) -> dualify(x, ntuple(j -> i==j, Val{N})), args, ntuple(identity, Val{N}))
2018-01-15 17:00:47 +00:00
out = broadcast(f, dargs...)
eltype(out) <: Dual || return out
2018-02-05 17:22:09 +00:00
b = Broadcasted(f, out)
2018-02-07 20:39:36 +00:00
track(Call(b, args...), b())
2017-08-19 15:02:19 +00:00
end
2017-08-27 08:49:42 +00:00
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val{ndims(x)}))
2018-02-07 20:39:36 +00:00
unbroadcast(x::AbstractArray, Δ) =
2017-08-22 23:25:19 +00:00
size(x) == size(Δ) ? Δ :
2017-08-27 08:49:42 +00:00
trim(x, sum(Δ, filter(n -> size(x, n) == 1, 1:ndims(Δ))))
2017-08-22 23:25:19 +00:00
2018-02-07 20:39:36 +00:00
unbroadcast(x::Number, Δ) = sum(Δ)
2017-08-28 00:40:59 +00:00
function getpartial(Δ, x, i)
@inbounds p = getindex(partials(x), i)
return Δ * p
end
2017-09-07 03:09:32 +00:00
function back(b::Broadcasted, Δ, args::Vararg{Any,N}) where N
2017-08-28 00:40:59 +00:00
Δargs = ntuple(i -> getpartial.(Δ, b.data, i), Val{N})
2017-09-07 03:09:32 +00:00
foreach((x, Δ) -> @back(x, unbroadcast(x, Δ)), args, Δargs)
2017-08-19 09:14:50 +00:00
end
2017-08-19 15:02:19 +00:00
2018-02-21 23:21:20 +00:00
Base.Broadcast._containertype(::Type{<:TrackedReal}) = TrackedArray
2017-08-19 15:02:19 +00:00
Base.Broadcast._containertype(::Type{<:TrackedArray}) = TrackedArray
2017-08-23 16:50:43 +00:00
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{TrackedArray}) = TrackedArray
2017-08-19 15:02:19 +00:00
Base.Broadcast.promote_containertype(::Type{Array}, ::Type{TrackedArray}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{Array}) = TrackedArray
2017-08-23 16:21:02 +00:00
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ct) = TrackedArray
Base.Broadcast.promote_containertype(ct, ::Type{TrackedArray}) = TrackedArray
2017-08-19 15:02:19 +00:00
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A::Ref) = ()
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A) = indices(A)
Base.Broadcast.broadcast_c(f, ::Type{TrackedArray}, A, Bs...) = tracked_broadcast(f, A, Bs...)