Flux.jl/test/compiler.jl

87 lines
1.7 KiB
Julia
Raw Normal View History

2017-08-19 19:20:20 +00:00
using DataFlow, MacroTools
2017-09-06 22:58:55 +00:00
using Flux: stack, unsqueeze
using Flux.Compiler: @net, graph
2017-08-19 19:20:20 +00:00
using DataFlow: Line, Frame
2017-08-19 19:26:27 +00:00
@net type Affine
W
b
x -> x*W .+ b
end
Affine(in::Integer, out::Integer; init = Flux.initn) =
Affine(init(in, out), init(1, out))
2017-08-19 19:20:20 +00:00
@net type TLP
first
second
function (x)
2017-08-22 17:04:10 +00:00
l1 = σ.(first(x))
2017-08-19 19:20:20 +00:00
l2 = softmax(second(l1))
end
end
2017-08-19 19:52:17 +00:00
@net type Recurrent
Wxy; Wyy; by
y
function (x)
2017-08-22 17:04:10 +00:00
y = tanh.( x * Wxy .+ y{-1} * Wyy .+ by )
2017-08-19 19:52:17 +00:00
end
end
Recurrent(in, out; init = Flux.initn) =
Recurrent(init((in, out)), init((out, out)), init(1, out), init(1, out))
2017-08-19 19:20:20 +00:00
syntax(v::Vertex) = prettify(DataFlow.syntax(v))
syntax(x) = syntax(graph(x))
@testset "Compiler" begin
xs = randn(1, 10)
d = Affine(10, 20)
2017-08-19 19:38:20 +00:00
@test d(xs) (xs*d.W + d.b)
2017-08-19 19:20:20 +00:00
d1 = @net x -> x * d.W + d.b
let
@capture(syntax(d), _Frame(_Line((+).(x_[1] * W_, b_))))
2017-08-19 19:38:20 +00:00
@test isa(x, DataFlow.Input) && W isa Array && b isa Array
2017-08-19 19:20:20 +00:00
end
let a1 = Affine(10, 20), a2 = Affine(20, 15)
tlp = TLP(a1, a2)
2017-08-22 17:04:10 +00:00
@test tlp(xs) softmax(a2(σ.(a1(xs))))
@test Flux.Compiler.interpmodel(tlp, xs) softmax(a2(σ.(a1(xs))))
2017-08-19 19:20:20 +00:00
end
let tlp = TLP(Affine(10, 21), Affine(20, 15))
e = try
Flux.Compiler.interpmodel(tlp, rand(1, 10))
catch e
e
end
@test e.trace[end].func == :TLP
2017-08-19 19:26:27 +00:00
@test e.trace[end-1].func == Symbol("Affine")
2017-08-19 19:20:20 +00:00
end
function apply(model, xs, state)
ys = similar(xs, 0)
for x in xs
state, y = model(state, x)
push!(ys, y)
end
state, ys
end
@testset "RNN unrolling" begin
r = Recurrent(10, 5)
xs = [rand(1, 10) for _ = 1:3]
2017-08-19 19:38:20 +00:00
_, ys = apply(Flux.Compiler.unroll1(r).model, xs, (r.y,))
2017-08-22 17:04:10 +00:00
@test ys[1] == tanh.(xs[1] * r.Wxy .+ r.y * r.Wyy .+ r.by)
2017-08-19 19:20:20 +00:00
ru = Flux.Compiler.unroll(r, 3)
2017-09-06 22:58:55 +00:00
ru(unsqueeze(stack(squeeze.(xs, 1), 1), 1))[1] == squeeze.(ys, 1)
2017-08-19 19:20:20 +00:00
end
end