2017-03-14 17:56:03 +00:00
|
|
|
|
struct Model
|
2016-10-28 20:17:48 +00:00
|
|
|
|
model::Any
|
2016-10-26 13:25:10 +00:00
|
|
|
|
session::Session
|
2016-10-28 15:06:56 +00:00
|
|
|
|
params::Dict{Flux.Param,Tensor}
|
2016-12-20 17:32:33 +00:00
|
|
|
|
stacks::Dict
|
2016-10-26 13:25:10 +00:00
|
|
|
|
inputs::Vector{Tensor}
|
2016-10-28 20:17:48 +00:00
|
|
|
|
output::Any
|
2016-10-26 13:25:10 +00:00
|
|
|
|
end
|
|
|
|
|
|
2016-12-20 17:18:40 +00:00
|
|
|
|
function makesession(model, inputs; session = Session(Graph()))
|
2016-12-20 17:32:33 +00:00
|
|
|
|
params, stacks, output = tograph(model, inputs...)
|
2017-04-27 11:48:11 +00:00
|
|
|
|
run(session, global_variables_initializer())
|
2016-12-20 17:32:33 +00:00
|
|
|
|
Model(model, session, params, stacks, inputs, output)
|
2016-12-20 17:18:40 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function makesession(model, n::Integer; session = Session(Graph()))
|
|
|
|
|
makesession(model, [placeholder(Float32) for _ = 1:n], session = session)
|
|
|
|
|
end
|
2016-10-28 19:50:27 +00:00
|
|
|
|
|
2016-12-20 17:18:40 +00:00
|
|
|
|
tf(model) = makesession(model, 1)
|
|
|
|
|
|
|
|
|
|
function storeparams!(sess, params)
|
|
|
|
|
for (p, t) in params
|
|
|
|
|
p.x = run(sess, t)
|
|
|
|
|
end
|
2016-10-26 13:25:10 +00:00
|
|
|
|
end
|
|
|
|
|
|
2016-12-20 17:18:40 +00:00
|
|
|
|
storeparams!(m::Model) = storeparams!(m.session, m.params)
|
|
|
|
|
|
2016-12-20 18:15:42 +00:00
|
|
|
|
function runmodel(m::Model, args...)
|
2016-10-26 13:25:10 +00:00
|
|
|
|
@assert length(args) == length(m.inputs)
|
2017-03-12 18:34:11 +00:00
|
|
|
|
run(m.session, m.output, Dict(zip(m.inputs, args)))
|
2016-10-26 13:25:10 +00:00
|
|
|
|
end
|
|
|
|
|
|
2017-03-12 18:34:11 +00:00
|
|
|
|
function (m::Model)(x)
|
2017-04-18 20:04:21 +00:00
|
|
|
|
@tferr m.stacks runmodel(m, convert.(Float32, x))
|
2016-10-28 19:50:27 +00:00
|
|
|
|
end
|
2016-10-26 13:25:10 +00:00
|
|
|
|
|
2016-12-20 16:37:43 +00:00
|
|
|
|
for f in :[back!, update!].args
|
|
|
|
|
@eval function Flux.$f(m::Model, args...)
|
|
|
|
|
error($(string(f)) * " is not yet supported on TensorFlow models")
|
|
|
|
|
end
|
2016-10-26 13:25:10 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
import Juno: info
|
|
|
|
|
|
|
|
|
|
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
|
|
|
|
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
|
|
|
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
|
|
|
|
i = 0
|
|
|
|
|
Y = placeholder(Float32)
|
2016-10-30 12:10:44 +00:00
|
|
|
|
Loss = loss(m.output, Y)
|
2016-10-26 13:25:10 +00:00
|
|
|
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
|
|
|
|
for e in 1:epoch
|
|
|
|
|
info("Epoch $e\n")
|
|
|
|
|
@progress for (x, y) in train
|
2017-04-19 13:48:10 +00:00
|
|
|
|
y, cur_loss, _ = run(m.session, [m.output, Loss, minimize_op],
|
2017-02-02 04:39:41 +00:00
|
|
|
|
Dict(m.inputs[1] => batchone(convertel(Float32, x)),
|
|
|
|
|
Y => batchone(convertel(Float32, y))))
|
2016-10-26 13:25:10 +00:00
|
|
|
|
if i % 5000 == 0
|
|
|
|
|
@show y
|
|
|
|
|
@show accuracy(m, test)
|
|
|
|
|
end
|
|
|
|
|
i += 1
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|