add to docs

This commit is contained in:
Dhairya Gandhi 2019-10-01 21:29:18 +05:30
parent dced8c04e5
commit 1fe321781b

View File

@ -21,7 +21,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
"""
struct Conv{N,M,F,A,V}
σ::F
@ -81,7 +81,7 @@ Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
"""
struct ConvTranspose{N,M,F,A,V}
σ::F
@ -154,7 +154,7 @@ Note that `out` must be an integer multiple of `in`.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
"""
struct DepthwiseConv{N,M,F,A,V}
σ::F
@ -228,7 +228,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
"""
struct CrossCor{N,M,F,A,V}
σ::F