296 lines
8.6 KiB
Julia
296 lines
8.6 KiB
Julia
# Cost functions
|
||
"""
|
||
mae(ŷ, y)
|
||
|
||
Return the mean of absolute error; calculated as
|
||
`sum(abs.(ŷ .- y)) / length(y)`.
|
||
"""
|
||
mae(ŷ, y) = sum(abs.(ŷ .- y)) * 1 // length(y)
|
||
|
||
|
||
"""
|
||
mse(ŷ, y)
|
||
|
||
Return the mean squared error between ŷ and y; calculated as
|
||
`sum((ŷ .- y).^2) / length(y)`.
|
||
|
||
# Examples
|
||
```jldoctest
|
||
julia> Flux.mse([0, 2], [1, 1])
|
||
1//1
|
||
```
|
||
"""
|
||
mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
|
||
|
||
|
||
"""
|
||
msle(ŷ, y; ϵ=eps(eltype(ŷ)))
|
||
|
||
Return the mean of the squared logarithmic errors; calculated as
|
||
`sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) / length(y)`.
|
||
The `ϵ` term provides numerical stability.
|
||
|
||
Penalizes an under-predicted estimate greater than an over-predicted estimate.
|
||
"""
|
||
msle(ŷ, y; ϵ=eps(eltype(ŷ))) = sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) * 1 // length(y)
|
||
|
||
|
||
|
||
"""
|
||
huber_loss(ŷ, y; δ=1.0)
|
||
|
||
Return the mean of the [Huber loss](https://en.wikipedia.org/wiki/Huber_loss)
|
||
given the prediction `ŷ` and true values `y`.
|
||
|
||
| 0.5 * |ŷ - y|, for |ŷ - y| <= δ
|
||
Huber loss = |
|
||
| δ * (|ŷ - y| - 0.5 * δ), otherwise
|
||
"""
|
||
function huber_loss(ŷ, y; δ=eltype(ŷ)(1))
|
||
abs_error = abs.(ŷ .- y)
|
||
temp = abs_error .< δ
|
||
x = eltype(ŷ)(0.5)
|
||
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
|
||
end
|
||
|
||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
|
||
return -sum(xlogy.(y, ŷ)) * 1 // size(y, 2)
|
||
end
|
||
|
||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
|
||
return -sum(xlogy.(y, ŷ)) .* weight * 1 // size(y, 2)
|
||
end
|
||
|
||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
|
||
return -sum(xlogy.(y, ŷ) .* weight) * 1 // size(y, 2)
|
||
end
|
||
|
||
"""
|
||
crossentropy(ŷ, y; weight = nothing)
|
||
|
||
Return the cross entropy between the given probability distributions;
|
||
calculated as `-sum(y .* log.(ŷ) .* weight) / size(y, 2)`.
|
||
|
||
`weight` can be `Nothing`, a `Number` or an `AbstractVector`.
|
||
`weight=nothing` acts like `weight=1` but is faster.
|
||
|
||
See also: [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
|
||
|
||
# Examples
|
||
```jldoctest
|
||
julia> Flux.crossentropy(softmax([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
|
||
3.085467254747739
|
||
```
|
||
"""
|
||
crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(ŷ, y, weight)
|
||
|
||
"""
|
||
logitcrossentropy(ŷ, y; weight = 1)
|
||
|
||
Return the crossentropy computed after a [`Flux.logsoftmax`](@ref) operation;
|
||
calculated as `-sum(y .* logsoftmax(ŷ) .* weight) / size(y, 2)`.
|
||
|
||
`logitcrossentropy(ŷ, y)` is mathematically equivalent to
|
||
[`Flux.crossentropy(softmax(ŷ), y)`](@ref) but it is more numerically stable.
|
||
|
||
See also: [`Flux.crossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
|
||
|
||
# Examples
|
||
```jldoctest
|
||
julia> Flux.logitcrossentropy([-1.1491, 0.8619, 0.3127], [1, 1, 0])
|
||
3.085467254747738
|
||
```
|
||
"""
|
||
function logitcrossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
||
return -sum(y .* logsoftmax(ŷ) .* weight) * 1 // size(y, 2)
|
||
end
|
||
|
||
"""
|
||
binarycrossentropy(ŷ, y; ϵ=eps(ŷ))
|
||
|
||
Return ``-y*\\log(ŷ + ϵ) - (1-y)*\\log(1-ŷ + ϵ)``. The `ϵ` term provides numerical stability.
|
||
|
||
Typically, the prediction `ŷ` is given by the output of a [`sigmoid`](@ref) activation.
|
||
|
||
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
|
||
|
||
# Examples
|
||
```jldoctest
|
||
julia> Flux.binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
|
||
3-element Array{Float64,1}:
|
||
1.424397097347566
|
||
0.35231664672364077
|
||
0.8616703662235441
|
||
```
|
||
"""
|
||
binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -xlogy(y, ŷ + ϵ) - xlogy(1 - y, 1 - ŷ + ϵ)
|
||
|
||
# Re-definition to fix interaction with CuArrays.
|
||
CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ)
|
||
|
||
"""
|
||
logitbinarycrossentropy(ŷ, y)
|
||
|
||
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
|
||
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable.
|
||
|
||
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)
|
||
|
||
# Examples
|
||
```jldoctest
|
||
julia> Flux.logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0])
|
||
3-element Array{Float64,1}:
|
||
1.4243970973475661
|
||
0.35231664672364094
|
||
0.8616703662235443
|
||
```
|
||
"""
|
||
logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ(ŷ)
|
||
|
||
# Re-definition to fix interaction with CuArrays.
|
||
CuArrays.@cufunc logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ(ŷ)
|
||
|
||
"""
|
||
normalise(x; dims=1)
|
||
|
||
Normalise `x` to mean 0 and standard deviation 1 across the dimensions given by `dims`.
|
||
Defaults to normalising over columns.
|
||
|
||
```jldoctest
|
||
julia> a = reshape(collect(1:9), 3, 3)
|
||
3×3 Array{Int64,2}:
|
||
1 4 7
|
||
2 5 8
|
||
3 6 9
|
||
|
||
julia> Flux.normalise(a)
|
||
3×3 Array{Float64,2}:
|
||
-1.22474 -1.22474 -1.22474
|
||
0.0 0.0 0.0
|
||
1.22474 1.22474 1.22474
|
||
|
||
julia> Flux.normalise(a, dims=2)
|
||
3×3 Array{Float64,2}:
|
||
-1.22474 0.0 1.22474
|
||
-1.22474 0.0 1.22474
|
||
-1.22474 0.0 1.22474
|
||
```
|
||
"""
|
||
function normalise(x::AbstractArray; dims=1)
|
||
μ′ = mean(x, dims = dims)
|
||
σ′ = std(x, dims = dims, mean = μ′, corrected=false)
|
||
return (x .- μ′) ./ σ′
|
||
end
|
||
|
||
"""
|
||
kldivergence(ŷ, y)
|
||
|
||
Return the
|
||
[Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
|
||
between the given probability distributions.
|
||
|
||
KL divergence is a measure of how much one probability distribution is different
|
||
from the other.
|
||
It is always non-negative and zero only when both the distributions are equal
|
||
everywhere.
|
||
"""
|
||
function kldivergence(ŷ, y)
|
||
entropy = sum(xlogx.(y)) * 1 //size(y,2)
|
||
cross_entropy = crossentropy(ŷ, y)
|
||
return entropy + cross_entropy
|
||
end
|
||
|
||
"""
|
||
poisson(ŷ, y)
|
||
|
||
Return how much the predicted distribution `ŷ` diverges from the expected Poisson
|
||
distribution `y`; calculated as `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`.
|
||
|
||
[More information.](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
|
||
"""
|
||
poisson(ŷ, y) = sum(ŷ .- xlogy.(y, ŷ)) * 1 // size(y,2)
|
||
|
||
"""
|
||
hinge(ŷ, y)
|
||
|
||
Return the [hinge loss](https://en.wikipedia.org/wiki/Hinge_loss) given the
|
||
prediction `ŷ` and true labels `y` (containing 1 or -1); calculated as
|
||
`sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)`.
|
||
|
||
See also: [`squared_hinge`](@ref)
|
||
"""
|
||
hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) * 1 // size(y, 2)
|
||
|
||
"""
|
||
squared_hinge(ŷ, y)
|
||
|
||
Return the squared hinge loss given the prediction `ŷ` and true labels `y`
|
||
(containing 1 or -1); calculated as `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`.
|
||
|
||
See also: [`hinge`](@ref)
|
||
"""
|
||
squared_hinge(ŷ, y) = sum((max.(0, 1 .- ŷ .* y)).^2) * 1 // size(y, 2)
|
||
|
||
"""
|
||
dice_coeff_loss(ŷ, y; smooth=1)
|
||
|
||
Return a loss based on the dice coefficient.
|
||
Used in the [V-Net](https://arxiv.org/pdf/1606.04797v1.pdf) image segmentation
|
||
architecture.
|
||
Similar to the F1_score. Calculated as:
|
||
1 - 2*sum(|ŷ .* y| + smooth) / (sum(ŷ.^2) + sum(y.^2) + smooth)`
|
||
"""
|
||
dice_coeff_loss(ŷ, y; smooth=eltype(ŷ)(1.0)) = 1 - (2*sum(y .* ŷ) + smooth) / (sum(y.^2) + sum(ŷ.^2) + smooth)
|
||
|
||
"""
|
||
tversky_loss(ŷ, y; β=0.7)
|
||
|
||
Return the [Tversky loss](https://arxiv.org/pdf/1706.05721.pdf).
|
||
Used with imbalanced data to give more weight to false negatives.
|
||
Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
|
||
Calculated as:
|
||
1 - sum(|y .* ŷ| + 1) / (sum(y .* ŷ + β*(1 .- y) .* ŷ + (1 - β)*y .* (1 .- ŷ)) + 1)
|
||
"""
|
||
tversky_loss(ŷ, y; β=eltype(ŷ)(0.7)) = 1 - (sum(y .* ŷ) + 1) / (sum(y .* ŷ + β*(1 .- y) .* ŷ + (1 - β)*y .* (1 .- ŷ)) + 1)
|
||
|
||
"""
|
||
flatten(x::AbstractArray)
|
||
|
||
Transform (w, h, c, b)-shaped input into (w × h × c, b)-shaped output
|
||
by linearizing all values for each element in the batch.
|
||
"""
|
||
function flatten(x::AbstractArray)
|
||
return reshape(x, :, size(x)[end])
|
||
end
|
||
|
||
"""
|
||
xlogx(x)
|
||
Return `x * log(x)` for `x ≥ 0`, handling `x = 0` by taking the downward limit.
|
||
"""
|
||
function xlogx(x)
|
||
result = x * log(x)
|
||
ifelse(iszero(x), zero(result), result)
|
||
end
|
||
CuArrays.@cufunc function xlogx(x)
|
||
result = x * log(x)
|
||
ifelse(iszero(x), zero(result), result)
|
||
end
|
||
|
||
"""
|
||
xlogy(x, y)
|
||
Return `x * log(y)` for `y > 0` with correct limit at `x = 0`.
|
||
"""
|
||
function xlogy(x, y)
|
||
result = x * log(y)
|
||
ifelse(iszero(x), zero(result), result)
|
||
end
|
||
CuArrays.@cufunc function xlogy(x, y)
|
||
result = x * log(y)
|
||
ifelse(iszero(x), zero(result), result)
|
||
end
|
||
|
||
@adjoint function broadcasted(::typeof(xlogy), x::Zygote.Numeric, y::Zygote.Numeric)
|
||
res = xlogy.(x, y)
|
||
res, Δ -> (nothing, Zygote.unbroadcast(x, xlogy.(Δ, y)), Zygote.unbroadcast(y, Δ .* x ./ y))
|
||
end
|