Commit Graph

79 Commits

Author SHA1 Message Date
bors[bot] 87ba651add
Merge #1165
1165: Fix docstring of logitcrossentropy r=dhairyagandhi96 a=cossio

Since `y` is a logit, there is no log (see the diff).

Co-authored-by: cossio <cossio@users.noreply.github.com>
2020-05-19 11:07:15 +00:00
Mike J Innes f5a8900ffb xlogy broadcast adjoint 2020-05-12 17:29:35 +01:00
Mike J Innes bd43201f37
fix logitcrossentropy doc string 2020-05-12 16:18:29 +01:00
cossio feb72d400a NaN 2020-05-07 12:44:32 +02:00
cossio 86d6555269 cufunc 2020-05-07 09:58:33 +02:00
cossio 8314200c51 generic 2020-05-05 19:23:05 +02:00
cossio 480473a81b xlogy 2020-05-05 18:33:50 +02:00
cossio 9e1fd883d5
Fix docstring of logitbinarycrossentropy and logitcrossentropy 2020-05-05 16:29:29 +02:00
janEbert 2ce5f6d9bf Further docstring improvements in src/
Some had to be re-done after the rebase
2020-04-04 22:59:45 +02:00
janEbert ab86e350f2 Improve docstrings
Improvements like...
   - fixing typos,
   - removing trailing and double whitespaces,
   - using `jldoctest` blocks where applicable,
   - fixing, updating or correctly setting up existing doctests,
   - improving consistency (for example, always use "# Examples" instead
     of other variants),
   - removing empty lines between docstrings and functions,
   - instead of mentioning keywords, put them into the docstring,
   - adding some missing but useful keywords,
   - adding references (`@ref`),
   - using LaTeX math where applicable, and
   - linking papers.

Debatable stuff that is untouched:
   - BE/AE s/z irregularities ("normalise" versus "normalize") since
     most papers use the AE version while the Flux source code was
     written with BE spelling.
   - Names of normalization functions are capitalized
     ("Batch Normalization" instead of "batch normalization").
2020-04-04 18:16:46 +02:00
janEbert 2f955a33cd `src/layers/stateless.jl`: Add missing docstrings 2020-04-04 17:36:23 +02:00
Garben Tanghe fc3af681ec updated documentation 2020-03-08 14:22:09 +01:00
Garben Tanghe 82e16a5b29 split up Flatten layer to use the flatten function 2020-03-08 14:21:59 +01:00
Adarsh Kumar 6e5c18bddf
Updated loss functions 2020-03-03 16:02:57 +05:30
Adarsh Kumar 2f05094068
Added consistency with ŷ and unicode chars 2020-03-02 20:00:47 +05:30
Adarsh Kumar f9e31a020c
Updated huber_loss with other minute changes 2020-03-02 13:25:23 +05:30
Adarsh Kumar 08dabce57e
Updated loss function docs 2020-03-01 12:00:11 +05:30
Adarsh Kumar 57c1b67d08
Merge branch 'master' into patch-1 2020-03-01 11:49:33 +05:30
Carlo Lucibello 425fcdbe69 NNlib docs + misc docs improvements 2020-02-29 11:14:48 +01:00
Adarsh Kumar 8afed01345
Apply suggestions from code review
Co-Authored-By: David Lung <lungd@users.noreply.github.com>
2020-02-27 23:23:53 +05:30
Adarsh Kumar 9dce623214
Updated Msle loss 2020-02-27 16:26:17 +05:30
Adarsh Kumar 980ce72914
Added tversky and dice loss 2020-02-27 02:00:28 +05:30
Adarsh Kumar 7710bb0b4b
Removed spurious promotions 2020-02-06 01:06:41 +05:30
Adarsh Kumar b5184553d4
Error correction in mae 2020-02-05 23:32:55 +05:30
Adarsh Kumar 643086c8db
Updated squared_hinge 2020-02-05 22:40:07 +05:30
Adarsh Kumar 7ac647a7ac
Added loss functions 2020-02-05 22:29:15 +05:30
bors[bot] d1edd9b16d
Merge #680
680: Added new loss functions. r=thebhatman a=thebhatman

I have added the KL Divergence Loss function, Poisson loss function, Logcosh loss, and Hinge loss function.

Co-authored-by: Manjunath Bhat <manjunathbhat9920@gmail.com>
Co-authored-by: thebhatman <manjunathbhat9920@gmail.com>
2020-01-13 15:46:25 +00:00
matsueushi a0314ce682 Fix logitbinarycrossentropy on CuArrays 2019-11-22 05:23:24 +00:00
janEbert 3dceef427f Fix binarycrossentropy on CuArrays 2019-11-08 16:48:11 +01:00
bors[bot] 645aa04464
Merge #898
898: Fix problem in crossentropy breaking GPU compilation r=MikeInnes a=kshyatt

Trying to run this simple example
```
using Flux, CuArrays
using Flux: crossentropy
model = Chain(
        Dense(728, 128, σ),
        LSTM(128, 256),
        LSTM(256, 128),
        Dense(128, 10),
        softmax) |> gpu
data = [rand(728) for i in 1:100];
out  = [rand(10) for i in 1:100];
loss(x, y) = crossentropy(model(x), y);
Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())
```
Old version of `crossentropy`:
```
ERROR: GPU compilation of #23(CuArrays.CuKernelState, CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global}, Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}) failed
KernelError: passing and using non-bitstype argument

Argument 4 to your kernel function is of type Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}.
That type is not isbits, and such arguments are only allowed when they are unused by the kernel.  .args is of type Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}} which is not isbits.
    .1 is of type Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}} which is not isbits.
      .x is of type Array{Float32,1} which is not isbits.


Stacktrace:
 [1] check_invocation(::CUDAnative.CompilerJob, ::LLVM.Function) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/validation.jl:70
 [2] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:187 [inlined]
 [3] macro expansion at /mnt/home/khyatt/.julia/packages/TimerOutputs/7zSea/src/TimerOutput.jl:216 [inlined]
 [4] #codegen#136(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.codegen), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:186
 [5] #codegen at ./none:0 [inlined]
 [6] #compile#135(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.compile), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:47
 [7] #compile#134 at ./none:0 [inlined]
 [8] #compile at ./none:0 [inlined] (repeats 2 times)
 [9] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:389 [inlined]
 [10] #cufunction#176(::Nothing, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(CUDAnative.cufunction), ::GPUArrays.var"#23#24", ::Type{Tuple{CuArrays.CuKernelState,CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
 [11] cufunction(::Function, ::Type) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
 [12] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:174 [inlined]
 [13] macro expansion at ./gcutils.jl:91 [inlined]
 [14] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:171 [inlined]
 [15] _gpu_call(::CuArrays.CuArrayBackend, ::Function, ::CuArray{Float32,1}, ::Tuple{CuArray{Float32,1},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CuArray{Float32,1},Tuple{Bool},Tuple{Int64}}}}}}}, ::Tuple{Tuple{Int64},Tuple{Int64}}) at /mnt/home/khyatt/.julia/dev/CuArrays/src/gpuarray_interface.jl:60
 [16] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:151 [inlined]
 [17] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:128 [inlined]
 [18] copyto! at /mnt/home/khyatt/.julia/dev/GPUArrays/src/broadcast.jl:48 [inlined]
 [19] copyto! at ./broadcast.jl:863 [inlined]
 [20] copy at ./broadcast.jl:839 [inlined]
 [21] materialize at ./broadcast.jl:819 [inlined]
 [22] (::Zygote.var"#1310#1311"{CuArray{Float32,1},CuArray{Float32,1}})(::Array{Float32,1}) at /mnt/home/khyatt/.julia/dev/Zygote/src/lib/broadcast.jl:68
```
New version:
```
julia> Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())

julia> # everyone finished happily and went on with their lives
```

Co-authored-by: Katharine Hyatt <khyatt@flatironinstitute.org>
2019-10-23 14:31:53 +00:00
Katharine Hyatt e0c1c0e057 Fix problem in crossentropy breaking GPU compilation 2019-10-22 14:00:57 -04:00
Katharine Hyatt b8b4bc48b9 Backticks and examples for normalise 2019-10-21 10:31:44 -04:00
thebhatman 96a23c295c Changes to docs 2019-10-09 14:53:03 +05:30
thebhatman ec886c8ce8 Added docstring for hinge loss 2019-10-03 21:13:09 +05:30
Manjunath Bhat 2b30319a55
Merge branch 'master' into patch-6 2019-09-30 21:05:02 +05:30
Mike J Innes c70276ddfe rm more deprecations 2019-05-02 18:57:52 -07:00
thebhatman b84ab7ac95 Removed logcosh 2019-04-05 03:16:54 +05:30
thebhatman 4efcc69ba5 logcosh averaged 2019-03-26 23:23:02 +05:30
Manjunath Bhat 930adb122d
Avoided promotion to Float64 in hinge. 2019-03-25 23:43:06 +05:30
thebhatman 6f078857be Added reference links to loss functions 2019-03-26 03:15:28 +05:30
thebhatman c4d12e57fe Loss function names in lowercase 2019-03-26 03:09:48 +05:30
Manjunath Bhat 633f0df01f
Added new loss functions. 2019-03-12 02:31:42 +05:30
pshashk b0a5844afb Remove dims=1 from normalise (#619)
* remove `dims=1`

* add dims arg

* fix test

* remove dims=1 only from deprecated version
2019-02-11 16:11:47 +00:00
pshashk b074b2491a
fix docstring 2019-02-08 21:49:53 +03:00
pshashk c3e04392d8
drop dims type restriction 2019-02-08 16:15:37 +03:00
pshashk 911c901294
`dims` kwarg 2019-02-08 16:00:32 +03:00
Moksh Jain 046f7b4eae fix std arguments in normalise 2019-02-05 18:36:04 +05:30
Moksh Jain c6409d7686 add support for n-dimensional input to normalise layer 2019-02-05 17:09:22 +05:30
Kristoffer Carlsson fd0f1c7a82
use uncorrected standard deviation in normalise
fixes https://github.com/FluxML/Flux.jl/issues/529
2019-01-30 17:42:19 +01:00
Mike J Innes 1cf37ab9eb rm some old deprecations 2019-01-25 09:54:32 +00:00