Flux.jl/src/layers/stateless.jl

296 lines
8.6 KiB
Julia
Raw Normal View History

2017-08-19 19:52:29 +00:00
# Cost functions
2020-02-05 16:59:15 +00:00
"""
mae(, y)
2020-03-01 06:19:33 +00:00
Return the mean of absolute error; calculated as
`sum(abs.(ŷ .- y)) / length(y)`.
2020-02-05 16:59:15 +00:00
"""
2020-02-05 19:36:41 +00:00
mae(, y) = sum(abs.( .- y)) * 1 // length(y)
2017-08-19 19:52:29 +00:00
2020-02-05 16:59:15 +00:00
"""
mse(, y)
2017-08-19 19:52:29 +00:00
Return the mean squared error between and y; calculated as
`sum((ŷ .- y).^2) / length(y)`.
# Examples
```jldoctest
julia> Flux.mse([0, 2], [1, 1])
1//1
```
2020-02-05 16:59:15 +00:00
"""
mse(, y) = sum(( .- y).^2) * 1 // length(y)
2017-08-19 19:52:29 +00:00
2020-02-05 16:59:15 +00:00
"""
2020-03-03 10:32:57 +00:00
msle(, y; ϵ=eps(eltype()))
2020-02-05 16:59:15 +00:00
Return the mean of the squared logarithmic errors; calculated as
`sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) / length(y)`.
The `ϵ` term provides numerical stability.
Penalizes an under-predicted estimate greater than an over-predicted estimate.
2020-02-05 16:59:15 +00:00
"""
2020-03-03 10:32:57 +00:00
msle(, y; ϵ=eps(eltype())) = sum((log.( .+ ϵ) .- log.(y .+ ϵ)).^2) * 1 // length(y)
2020-02-05 16:59:15 +00:00
"""
2020-03-03 10:32:57 +00:00
huber_loss(, y; δ=1.0)
Return the mean of the [Huber loss](https://en.wikipedia.org/wiki/Huber_loss)
given the prediction `` and true values `y`.
2020-02-05 16:59:15 +00:00
| 0.5 * | - y|, for | - y| <= δ
Huber loss = |
| δ * (| - y| - 0.5 * δ), otherwise
2020-02-05 16:59:15 +00:00
"""
2020-03-03 10:32:57 +00:00
function huber_loss(, y; δ=eltype()(1))
abs_error = abs.( .- y)
temp = abs_error .< δ
x = eltype()(0.5)
2020-03-03 10:32:57 +00:00
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
2020-02-05 16:59:15 +00:00
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
2020-05-05 16:29:51 +00:00
return -sum(xlogy.(y, )) * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
2020-05-05 16:29:51 +00:00
return -sum(xlogy.(y, )) .* weight * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
2020-05-05 16:29:51 +00:00
return -sum(xlogy.(y, ) .* weight) * 1 // size(y, 2)
end
2020-02-05 16:59:15 +00:00
"""
crossentropy(, y; weight = nothing)
2020-02-05 16:59:15 +00:00
Return the cross entropy between the given probability distributions;
calculated as `-sum(y .* log.(ŷ) .* weight) / size(y, 2)`.
`weight` can be `Nothing`, a `Number` or an `AbstractVector`.
`weight=nothing` acts like `weight=1` but is faster.
2020-02-05 16:59:15 +00:00
See also: [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.crossentropy(softmax([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3.085467254747739
```
2020-02-05 16:59:15 +00:00
"""
crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(, y, weight)
2020-02-29 10:14:48 +00:00
"""
logitcrossentropy(, y; weight = 1)
2020-02-05 16:59:15 +00:00
Return the crossentropy computed after a [`Flux.logsoftmax`](@ref) operation;
calculated as `-sum(y .* logsoftmax(ŷ) .* weight) / size(y, 2)`.
2020-02-29 10:14:48 +00:00
`logitcrossentropy(ŷ, y)` is mathematically equivalent to
2020-05-12 15:18:29 +00:00
[`Flux.crossentropy(softmax(ŷ), y)`](@ref) but it is more numerically stable.
2020-02-29 10:14:48 +00:00
See also: [`Flux.crossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitcrossentropy([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3.085467254747738
```
2020-02-29 10:14:48 +00:00
"""
function logitcrossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
return -sum(y .* logsoftmax() .* weight) * 1 // size(y, 2)
2017-10-17 16:57:10 +00:00
end
2017-10-10 20:33:37 +00:00
"""
2018-06-26 18:29:06 +00:00
binarycrossentropy(, y; ϵ=eps())
Return ``-y*\\log( + ϵ) - (1-y)*\\log(1- + ϵ)``. The `ϵ` term provides numerical stability.
2020-02-29 10:14:48 +00:00
Typically, the prediction `` is given by the output of a [`sigmoid`](@ref) activation.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3-element Array{Float64,1}:
1.424397097347566
0.35231664672364077
0.8616703662235441
```
"""
2020-05-05 16:29:51 +00:00
binarycrossentropy(, y; ϵ=eps()) = -xlogy(y, + ϵ) - xlogy(1 - y, 1 - + ϵ)
2019-11-08 15:48:11 +00:00
# Re-definition to fix interaction with CuArrays.
CuArrays.@cufunc binarycrossentropy(, y; ϵ=eps()) = -y*log( + ϵ) - (1 - y)*log(1 - + ϵ)
"""
2020-02-29 10:14:48 +00:00
logitbinarycrossentropy(ŷ, y)
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3-element Array{Float64,1}:
1.4243970973475661
0.35231664672364094
0.8616703662235443
```
"""
2020-02-29 10:14:48 +00:00
logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ()
# Re-definition to fix interaction with CuArrays.
2020-02-29 10:14:48 +00:00
CuArrays.@cufunc logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ()
2017-10-10 20:33:37 +00:00
"""
2020-02-29 10:14:48 +00:00
normalise(x; dims=1)
2017-10-10 20:33:37 +00:00
Normalise `x` to mean 0 and standard deviation 1 across the dimensions given by `dims`.
Defaults to normalising over columns.
2019-10-21 14:31:44 +00:00
```jldoctest
2020-02-29 10:14:48 +00:00
julia> a = reshape(collect(1:9), 3, 3)
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
2020-02-29 10:14:48 +00:00
julia> Flux.normalise(a)
2020-02-29 10:14:48 +00:00
3×3 Array{Float64,2}:
-1.22474 -1.22474 -1.22474
2020-02-29 10:14:48 +00:00
0.0 0.0 0.0
1.22474 1.22474 1.22474
julia> Flux.normalise(a, dims=2)
2020-02-29 10:14:48 +00:00
3×3 Array{Float64,2}:
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
2020-02-29 10:14:48 +00:00
```
2017-10-10 20:33:37 +00:00
"""
2019-02-08 13:15:37 +00:00
function normalise(x::AbstractArray; dims=1)
μ′ = mean(x, dims = dims)
2019-02-05 13:06:04 +00:00
σ = std(x, dims = dims, mean = μ′, corrected=false)
2017-10-23 11:53:07 +00:00
return (x .- μ′) ./ σ
2017-10-10 20:33:37 +00:00
end
2019-02-08 13:00:32 +00:00
2019-03-11 21:01:42 +00:00
"""
2019-10-09 09:23:03 +00:00
kldivergence(, y)
2020-02-29 10:14:48 +00:00
Return the
[Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
between the given probability distributions.
2020-03-01 06:19:33 +00:00
KL divergence is a measure of how much one probability distribution is different
from the other.
It is always non-negative and zero only when both the distributions are equal
everywhere.
2019-03-11 21:01:42 +00:00
"""
2019-03-25 21:39:48 +00:00
function kldivergence(, y)
2020-05-05 16:29:51 +00:00
entropy = sum(xlogx.(y)) * 1 //size(y,2)
2019-03-11 21:01:42 +00:00
cross_entropy = crossentropy(, y)
return entropy + cross_entropy
end
"""
2019-10-09 09:23:03 +00:00
poisson(, y)
2020-02-29 10:14:48 +00:00
Return how much the predicted distribution `` diverges from the expected Poisson
distribution `y`; calculated as `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`.
2020-03-01 06:19:33 +00:00
[More information.](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
2019-03-11 21:01:42 +00:00
"""
2020-05-05 16:29:51 +00:00
poisson(, y) = sum( .- xlogy.(y, )) * 1 // size(y,2)
2019-03-11 21:01:42 +00:00
2019-10-03 15:43:09 +00:00
"""
2019-10-09 09:23:03 +00:00
hinge(, y)
2020-02-05 16:59:15 +00:00
Return the [hinge loss](https://en.wikipedia.org/wiki/Hinge_loss) given the
prediction `` and true labels `y` (containing 1 or -1); calculated as
`sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)`.
2020-03-01 06:19:33 +00:00
See also: [`squared_hinge`](@ref)
2019-10-03 15:43:09 +00:00
"""
2020-03-03 10:32:57 +00:00
hinge(, y) = sum(max.(0, 1 .- .* y)) * 1 // size(y, 2)
2020-02-05 16:59:15 +00:00
"""
squared_hinge(, y)
Return the squared hinge loss given the prediction `` and true labels `y`
(containing 1 or -1); calculated as `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`.
2020-03-01 06:19:33 +00:00
See also: [`hinge`](@ref)
2020-02-05 16:59:15 +00:00
"""
2020-03-03 10:32:57 +00:00
squared_hinge(, y) = sum((max.(0, 1 .- .* y)).^2) * 1 // size(y, 2)
2020-02-26 20:30:28 +00:00
"""
2020-03-03 10:32:57 +00:00
dice_coeff_loss(, y; smooth=1)
2020-02-26 20:30:28 +00:00
Return a loss based on the dice coefficient.
Used in the [V-Net](https://arxiv.org/pdf/1606.04797v1.pdf) image segmentation
architecture.
Similar to the F1_score. Calculated as:
1 - 2*sum(| .* y| + smooth) / (sum(.^2) + sum(y.^2) + smooth)`
2020-02-26 20:30:28 +00:00
"""
2020-03-03 10:32:57 +00:00
dice_coeff_loss(, y; smooth=eltype()(1.0)) = 1 - (2*sum(y .* ) + smooth) / (sum(y.^2) + sum(.^2) + smooth)
2020-02-26 20:30:28 +00:00
"""
2020-03-03 10:32:57 +00:00
tversky_loss(, y; β=0.7)
2020-02-26 20:30:28 +00:00
Return the [Tversky loss](https://arxiv.org/pdf/1706.05721.pdf).
Used with imbalanced data to give more weight to false negatives.
Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
Calculated as:
1 - sum(|y .* | + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
2020-02-26 20:30:28 +00:00
"""
2020-03-03 10:32:57 +00:00
tversky_loss(, y; β=eltype()(0.7)) = 1 - (sum(y .* ) + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
"""
flatten(x::AbstractArray)
Transform (w, h, c, b)-shaped input into (w × h × c, b)-shaped output
by linearizing all values for each element in the batch.
"""
function flatten(x::AbstractArray)
return reshape(x, :, size(x)[end])
end
2020-05-05 16:29:51 +00:00
"""
2020-05-05 17:23:05 +00:00
xlogx(x)
2020-05-05 16:29:51 +00:00
Return `x * log(x)` for `x ≥ 0`, handling `x = 0` by taking the downward limit.
"""
2020-05-05 17:23:05 +00:00
function xlogx(x)
result = x * log(x)
2020-05-07 10:44:32 +00:00
ifelse(iszero(x), zero(result), result)
2020-05-05 17:23:05 +00:00
end
2020-05-07 07:54:05 +00:00
CuArrays.@cufunc function xlogx(x)
result = x * log(x)
2020-05-07 10:44:32 +00:00
ifelse(iszero(x), zero(result), result)
2020-05-07 07:54:05 +00:00
end
2020-05-05 16:29:51 +00:00
"""
2020-05-05 17:23:05 +00:00
xlogy(x, y)
2020-05-05 16:29:51 +00:00
Return `x * log(y)` for `y > 0` with correct limit at `x = 0`.
"""
2020-05-05 17:23:05 +00:00
function xlogy(x, y)
result = x * log(y)
2020-05-07 10:44:32 +00:00
ifelse(iszero(x), zero(result), result)
2020-05-05 17:23:05 +00:00
end
2020-05-07 07:54:05 +00:00
CuArrays.@cufunc function xlogy(x, y)
result = x * log(y)
2020-05-07 10:44:32 +00:00
ifelse(iszero(x), zero(result), result)
2020-05-07 07:54:05 +00:00
end
2020-05-12 16:29:35 +00:00
@adjoint function broadcasted(::typeof(xlogy), x::Zygote.Numeric, y::Zygote.Numeric)
res = xlogy.(x, y)
res, Δ -> (nothing, Zygote.unbroadcast(x, xlogy.(Δ, y)), Zygote.unbroadcast(y, Δ .* x ./ y))
end