Modified stopping criteria and add of new data file (previously ignored)

This commit is contained in:
Eduardo Cueto-Mendoza 2025-01-29 11:26:17 +00:00
parent b62011c029
commit c8d8253d24
Signed by: TastyPancakes
GPG Key ID: 941DF56C7242C3F1
12 changed files with 617 additions and 109 deletions

7
.gitignore vendored
View File

@ -1,21 +1,22 @@
**/**/__pycache__/
**/**/__init__.py
**/__pycache__/
**/__init__.py
checkpoints/
__pycache__/
data_budget/
bayes_*
times_*
data/cifar-10-batches-py/
data/MNIST/
.vscode
freq_*
data/
.idea
*.pkl
*.txt
*.tar.gz
stp
sav
bay
frq
sav
tmp
*_DATA

View File

@ -34,10 +34,23 @@ def makeArguments(arguments: ArgumentParser) -> dict:
all_args.add_argument(
"-a", "--AccuracyBound", action="store_true", help="Accuracy Bound criteria"
)
all_args.add_argument(
"-x",
"--EfficiencyStopping",
action="store_true",
help="Efficiency Stopping criteria",
)
all_args.add_argument("-s", "--Save", action="store_true", help="Save model")
all_args.add_argument(
"--net_type", default="lenet", type=str, help="model = [lenet/AlexNet/3Conv3FC]"
)
all_args.add_argument(
"-N",
"--noise_type",
default=None,
type=str,
help="noise = [Gaussian(m,s)/Raleigh(a,b)/Erlang(a,b)/Exponential(a)/Uniform(a,b)/Impulse(a)]",
)
all_args.add_argument(
"--dataset",
default="CIFAR10",

1
data/__init__.py Executable file
View File

@ -0,0 +1 @@
from .data import getDataloader, getDataset

405
data/data.py Executable file
View File

@ -0,0 +1,405 @@
import random
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from torch.utils.data.sampler import SubsetRandomSampler
class AddNoNoise(object):
def __init__(self, mean=0.0, std=1.0):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor
def __repr__(self):
return self.__class__.__name__ + "No noise"
class AddGaussianNoise(object):
def __init__(self, mean=0.0, std=1.0):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + "(mean={0}, std={1})".format(
self.mean, self.std
)
class AddRaleighNoise(object):
def __init__(self, a=0.0, b=0.0):
self.std = (b * (4 - np.pi)) / 4
self.mean = a + np.sqrt((np.pi * b) / 4)
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + "(mean={0}, std={1})".format(
self.mean, self.std
)
class AddErlangNoise(object):
def __init__(self, a=0.0, b=0.0):
if a == 0.0:
self.std = 0.0
self.mean = 0.0
else:
self.std = b / a
self.mean = b / (2 * a)
def __call__(self, tensor):
if self.mean == 0.0:
return tensor * self.mean
else:
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + "(mean={0}, std={1})".format(
self.mean, self.std
)
class AddExponentialNoise(object):
def __init__(self, a=0.0, b=0):
if a == 0.0:
self.mean = 0.0
else:
self.std = 1 / (2 * a)
self.mean = 1 / a
def __call__(self, tensor):
if self.mean == 0.0:
return tensor * self.mean
else:
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + "(mean={0}, std={1})".format(
self.mean, self.std
)
class AddUniformNoise(object):
def __init__(self, a=0.0, b=0.0):
if a == 0.0:
self.std = 0.0
self.mean = 0.0
else:
self.std = (b - a) ** 2 / 12
self.mean = (b + a) / 2
def __call__(self, tensor):
if self.mean == 0.0:
return tensor * self.mean
else:
return tensor + (torch.randn(tensor.size()) * self.std + self.mean)
def __repr__(self):
return self.__class__.__name__ + "(mean={0}, std={1})".format(
self.mean, self.std
)
class AddImpulseNoise(object):
def __init__(self, a=0.0, b=0):
self.value = a
def __call__(self, tensor):
if random.gauss(0, 1) > 0:
return tensor * self.value
elif random.gauss(0, 1) < 0:
return tensor * (-1 * self.value)
else:
return tensor * 0.0
def __repr__(self):
return self.__class__.__name__ + "(a={0})".format(self.value)
class CustomDataset(Dataset):
def __init__(self, data, labels, transform=None):
self.data = data
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
sample = self.data[idx]
label = self.labels[idx]
if self.transform:
sample = self.transform(sample)
return sample, label
def extract_classes(dataset, classes):
idx = torch.zeros_like(dataset.targets, dtype=torch.bool)
for target in classes:
idx = idx | (dataset.targets == target)
data, targets = dataset.data[idx], dataset.targets[idx]
return data, targets
def getDataset(dataset, noise=None, mean=0.0, std=0.0):
"""Function to get training datasets"""
noise_type = None
if noise is None:
# print("No noise added")
noise_type = AddNoNoise
elif noise == "gaussian":
noise_type = AddGaussianNoise
elif noise == "raleigh":
noise_type = AddRaleighNoise
elif noise == "erlang":
noise_type = AddErlangNoise
elif noise == "exponential":
noise_type = AddExponentialNoise
elif noise == "uniform":
noise_type = AddUniformNoise
elif noise == "impulse":
noise_type = AddImpulseNoise
print(f"{noise_type} noise added")
transform_split_mnist = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize((32, 32)),
transforms.ToTensor(),
noise_type(mean, std),
]
)
transform_mnist = transforms.Compose(
[
transforms.Resize((32, 32)),
transforms.ToTensor(),
noise_type(mean, std),
]
)
transform_cifar = transforms.Compose(
[
transforms.Resize((32, 32)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
noise_type(mean, std),
]
)
if dataset == "CIFAR10":
trainset = torchvision.datasets.CIFAR10(
root="./data", train=True, download=True, transform=transform_cifar
)
testset = torchvision.datasets.CIFAR10(
root="./data", train=False, download=True, transform=transform_cifar
)
num_classes = 10
inputs = 3
elif dataset == "CIFAR100":
trainset = torchvision.datasets.CIFAR100(
root="./data", train=True, download=True, transform=transform_cifar
)
testset = torchvision.datasets.CIFAR100(
root="./data", train=False, download=True, transform=transform_cifar
)
num_classes = 100
inputs = 3
elif dataset == "MNIST":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
num_classes = 10
inputs = 1
elif dataset == "SplitMNIST-2.1":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [0, 1, 2, 3, 4])
test_data, test_targets = extract_classes(testset, [0, 1, 2, 3, 4])
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 5
inputs = 1
elif dataset == "SplitMNIST-2.2":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [5, 6, 7, 8, 9])
test_data, test_targets = extract_classes(testset, [5, 6, 7, 8, 9])
train_targets -= 5 # Mapping target 5-9 to 0-4
test_targets -= 5 # Hence, add 5 after prediction
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 5
inputs = 1
elif dataset == "SplitMNIST-5.1":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [0, 1])
test_data, test_targets = extract_classes(testset, [0, 1])
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 2
inputs = 1
elif dataset == "SplitMNIST-5.2":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [2, 3])
test_data, test_targets = extract_classes(testset, [2, 3])
train_targets -= 2 # Mapping target 2-3 to 0-1
test_targets -= 2 # Hence, add 2 after prediction
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 2
inputs = 1
elif dataset == "SplitMNIST-5.3":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [4, 5])
test_data, test_targets = extract_classes(testset, [4, 5])
train_targets -= 4 # Mapping target 4-5 to 0-1
test_targets -= 4 # Hence, add 4 after prediction
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 2
inputs = 1
elif dataset == "SplitMNIST-5.4":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [6, 7])
test_data, test_targets = extract_classes(testset, [6, 7])
train_targets -= 6 # Mapping target 6-7 to 0-1
test_targets -= 6 # Hence, add 6 after prediction
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 2
inputs = 1
elif dataset == "SplitMNIST-5.5":
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform_mnist
)
testset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform_mnist
)
train_data, train_targets = extract_classes(trainset, [8, 9])
test_data, test_targets = extract_classes(testset, [8, 9])
train_targets -= 8 # Mapping target 8-9 to 0-1
test_targets -= 8 # Hence, add 8 after prediction
trainset = CustomDataset(
train_data, train_targets, transform=transform_split_mnist
)
testset = CustomDataset(
test_data, test_targets, transform=transform_split_mnist
)
num_classes = 2
inputs = 1
return trainset, testset, inputs, num_classes
def getDataloader(trainset, testset, valid_size, batch_size, num_workers):
num_train = len(trainset)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers
)
valid_loader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, num_workers=num_workers
)
return train_loader, valid_loader, test_loader

View File

@ -53,6 +53,5 @@ def total_watt_consumed(pickle_name):
break
x = np.array(x)
x = x[:, 0]
y = [float(re.findall("\d+.\d+", xi)[0]) for xi in x]
return sum(y)
# y = [float(re.findall(r"\d+.\d+", xi)[0]) for xi in x]
return sum(x)

5
layers/__init__.py Executable file
View File

@ -0,0 +1,5 @@
from .BBB.BBBConv import BBBConv2d as BBB_Conv2d
from .BBB.BBBLinear import BBBLinear as BBB_Linear
from .BBB_LRT.BBBConv import BBBConv2d as BBB_LRT_Conv2d
from .BBB_LRT.BBBLinear import BBBLinear as BBB_LRT_Linear
from .misc import FlattenLayer, ModuleWrapper

View File

@ -15,7 +15,7 @@ import utils
from models.BayesianModels.Bayesian3Conv3FC import BBB3Conv3FC
from models.BayesianModels.BayesianAlexNet import BBBAlexNet
from models.BayesianModels.BayesianLeNet import BBBLeNet
from stopping_crit import accuracy_bound, e_stop, energy_bound
from stopping_crit import accuracy_bound, e_stop, efficiency_stop, energy_bound
with open("configuration.pkl", "rb") as file:
while True:
@ -30,7 +30,6 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def getModel(net_type, inputs, outputs, priors, layer_type, activation_type):
print(net_type)
if net_type == "lenet":
return BBBLeNet(
outputs,
@ -92,9 +91,7 @@ def train_model(
return training_loss / len(trainloader), np.mean(accs), np.mean(kl_list)
def validate_model(
net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=None, num_epochs=None
):
def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=None, num_epochs=None):
"""Calculate ensemble accuracy and NLL Loss"""
net.train()
valid_loss = 0.0
@ -119,7 +116,10 @@ def validate_model(
def run(dataset, net_type):
# Noise applied to dataset
noise_type = cfg["noise_type"]
mean = 0.5
std = 0.5
# Hyper Parameter settings
layer_type = cfg["model"]["layer_type"]
activation_type = cfg["model"]["activation_type"]
@ -134,17 +134,13 @@ def run(dataset, net_type):
batch_size = cfg["model"]["batch_size"]
beta_type = cfg["model"]["beta_type"]
trainset, testset, inputs, outputs = data.getDataset(dataset)
trainset, testset, inputs, outputs = data.getDataset(dataset, noise_type, mean=mean, std=std)
train_loader, valid_loader, test_loader = data.getDataloader(
trainset, testset, valid_size, batch_size, num_workers
)
net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type).to(
device
)
net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type).to(device)
ckpt_dir = f"checkpoints/{dataset}/bayesian"
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}\
_{activation_type}_{cfg["model"]["size"]}.pt'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok=True)
@ -191,6 +187,10 @@ def run(dataset, net_type):
)
)
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg["model"]["size"]}_epoch_{epoch}_noise_{noise_type}.pt'
if sav == 1:
torch.save(net.state_dict(), ckpt_name)
if stp == 2:
# print("Using early stopping")
if e_stop(early_stop, valid_acc, epoch + 1, 2, cfg["model"]["sens"]) == 1:
@ -200,18 +200,22 @@ def run(dataset, net_type):
if energy_bound(cfg["model"]["energy_thrs"]) == 1:
break
elif stp == 4:
if dataset == "MNIST":
# print("Using accuracy bound")
if accuracy_bound(train_acc, cfg.acc_thrs) == 1:
if accuracy_bound(train_acc, 0.99) == 1:
break
else:
print("Training for {} epochs".format(cfg["model"]["n_epochs"]))
# print("Using accuracy bound")
if accuracy_bound(train_acc, 0.50) == 1:
break
elif stp == 5:
# print("Using efficiency stoping")
if efficiency_stop(net, train_acc, batch_size, 0.002) == 1:
break
else:
print(f"Training for {cfg['model']['n_epochs']} epochs")
if sav == 1:
# save model when finished
if epoch == cfg.n_epochs - 1:
torch.save(net.state_dict(), ckpt_name)
with open("bayes_exp_data_" + str(cfg["model"]["size"]) + ".pkl", "wb") as f:
with open("bayes_exp_data_" + str(cfg["model"]["size"]) + f"_{dataset}" + ".pkl", "wb") as f:
pickle.dump(train_data, f)

View File

@ -14,7 +14,7 @@ import metrics
from models.NonBayesianModels.AlexNet import AlexNet
from models.NonBayesianModels.LeNet import LeNet
from models.NonBayesianModels.ThreeConvThreeFC import ThreeConvThreeFC
from stopping_crit import accuracy_bound, e_stop, energy_bound
from stopping_crit import accuracy_bound, e_stop, efficiency_stop, energy_bound
with open("configuration.pkl", "rb") as file:
while True:
@ -71,7 +71,10 @@ def validate_model(net, criterion, valid_loader):
def run(dataset, net_type):
# Noise on dataset
noise_type = None
mean = 0.5
std = 1
# Hyper Parameter settings
n_epochs = cfg["model"]["n_epochs"]
lr = cfg["model"]["lr"]
@ -79,15 +82,13 @@ def run(dataset, net_type):
valid_size = cfg["model"]["valid_size"]
batch_size = cfg["model"]["batch_size"]
trainset, testset, inputs, outputs = data.getDataset(dataset)
trainset, testset, inputs, outputs = data.getDataset(dataset, noise_type, mean=mean, std=std)
train_loader, valid_loader, test_loader = data.getDataloader(
trainset, testset, valid_size, batch_size, num_workers
)
net = getModel(net_type, inputs, outputs).to(device)
ckpt_dir = f"checkpoints/{dataset}/frequentist"
ckpt_name = f'checkpoints/{dataset}/frequentist/model\
_{net_type}_{cfg["model"]["size"]}.pt'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok=True)
@ -120,6 +121,10 @@ def run(dataset, net_type):
)
)
ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg["model"]["size"]}_epoch_{epoch}_noise_{noise_type}.pt'
if sav == 1:
torch.save(net.state_dict(), ckpt_name)
if stp == 2:
# print("Using early stopping")
if e_stop(early_stop, valid_acc, epoch, 2, cfg["model"]["sens"]) == 1:
@ -129,18 +134,22 @@ def run(dataset, net_type):
if energy_bound(cfg["model"]["energy_thrs"]) == 1:
break
elif stp == 4:
# print('Using accuracy bound')
if accuracy_bound(train_acc, cfg["model"]["acc_thrs"]) == 1:
if dataset == "MNIST":
# print("Using accuracy bound")
if accuracy_bound(train_acc, 0.99) == 1:
break
else:
# print("Using accuracy bound")
if accuracy_bound(train_acc, 0.50) == 1:
break
elif stp == 5:
# print("Using efficiency bound")
if efficiency_stop(net, train_acc, batch_size, 0.25) == 1:
break
else:
print("Training for {} epochs".format(cfg["model"]["n_epochs"]))
if sav == 1:
# save model when finished
if epoch <= n_epochs:
torch.save(net.state_dict(), ckpt_name)
with open("freq_exp_data_" + str(cfg["model"]["size"]) + ".pkl", "wb") as f:
with open("freq_exp_data_" + str(cfg["model"]["size"]) + f"_{dataset}" + ".pkl", "wb") as f:
pickle.dump(train_data, f)

9
pyproject.toml Normal file
View File

@ -0,0 +1,9 @@
[tool.pylint.'FORMAT']
max-line-length = 110
[tool.pylint.'MESSAGES CONTROL']
disable = ["missing-module-docstring", "missing-function-docstring", "import-error"]
[tool.black]
line-length = 110

View File

@ -1,15 +1,17 @@
import pickle
gpu_data = []
with (open("bayesian_wattdata_3.pkl", "rb")) as openfile:
with open("configuration.pkl", "rb") as openfile:
while True:
try:
gpu_data = pickle.load(openfile)
except EOFError:
break
#exp_data = []
#with (open("bayes_exp_data_6.pkl", "rb")) as openfile:
print(gpu_data)
# exp_data = []
# with (open("bayes_exp_data_6.pkl", "rb")) as openfile:
# while True:
# try:
# exp_data = pickle.load(openfile)

View File

@ -1,9 +1,12 @@
import psutil
import pickle
import arguments
from time import sleep
#from pathlib import Path
# from pathlib import Path
import subprocess as sub
from time import sleep
import psutil
import arguments
from arguments import makeArguments
@ -15,16 +18,21 @@ def kill(proc_pid):
cfg = {
"model": {"net_type": None, "type": None, "size": None, "layer_type":
"lrt", "activation_type": "softplus", "priors": {
'prior_mu': 0,
'prior_sigma': 0.1,
'posterior_mu_initial': (0, 0.1), # (mean,std) normal_
'posterior_rho_initial': (-5, 0.1), # (mean,std) normal_
"model": {
"net_type": None,
"type": None,
"size": None,
"layer_type": "lrt",
"activation_type": "softplus",
"priors": {
"prior_mu": 0,
"prior_sigma": 0.1,
"posterior_mu_initial": (0, 0.1), # (mean,std) normal_
"posterior_rho_initial": (-5, 0.1), # (mean,std) normal_
},
"n_epochs": 100,
"sens": 1e-9,
"energy_thrs": 10000,
"energy_thrs": 100000,
"acc_thrs": 0.99,
"lr": 0.001,
"num_workers": 4,
@ -36,6 +44,7 @@ cfg = {
# Use float for const value
},
"data": None,
"noise_type": None,
"stopping_crit": None,
"save": None,
"pickle_path": None,
@ -47,10 +56,10 @@ check = list(args.values())
if all(v is None for v in check):
raise Exception("One argument required")
elif None in check:
if args['f'] is not None:
if args["f"] is not None:
cmd = ["python", "main_frequentist.py"]
cfg["model"]["type"] = "freq"
elif args['b'] is not None:
elif args["b"] is not None:
cmd = ["python", "main_bayesian.py"]
cfg["model"]["type"] = "bayes"
else:
@ -61,26 +70,30 @@ wide = args["f"] or args["b"]
cfg["model"]["size"] = wide
cfg["data"] = args["dataset"]
cfg["noise_type"] = args["noise_type"]
cfg["model"]["net_type"] = args["net_type"]
if args['EarlyStopping']:
if args["EarlyStopping"]:
cfg["stopping_crit"] = 2
elif args['EnergyBound']:
elif args["EnergyBound"]:
cfg["stopping_crit"] = 3
elif args['AccuracyBound']:
elif args["AccuracyBound"]:
cfg["stopping_crit"] = 4
elif args["EfficiencyStopping"]:
cfg["stopping_crit"] = 5
else:
cfg["stopping_crit"] = 1
if args['Save']:
if args["Save"]:
cfg["save"] = 1
else:
cfg["save"] = 0
cfg["pickle_path"] = "{}_wattdata_{}.pkl".format(cfg["model"]["type"],
cfg["model"]["size"])
cfg["pickle_path"] = (
f"{cfg['model']['type']}_wattdata_{cfg['model']['size']}_{cfg['data']}.pkl"
)
with open("configuration.pkl", "wb") as f:
pickle.dump(cfg, f)
@ -94,34 +107,35 @@ cpu_watt = "cpu_watt.sh"
ram = "mem_free.sh"
gpu = "radeontop.sh"
#path_cpu_watt = Path(cpu_watt)
#path_ram = Path(ram)
#path_gpu = Path(gpu)
# path_cpu_watt = Path(cpu_watt)
# path_ram = Path(ram)
# path_gpu = Path(gpu)
#path_cpu_watt = str(Path(cpu_watt).absolute()) + '/' + cpu_watt
#path_ram = str(Path(ram).absolute()) + '/' + ram
#path_gpu = str(Path(gpu).absolute()) + '/' + gpu
# path_cpu_watt = str(Path(cpu_watt).absolute()) + '/' + cpu_watt
# path_ram = str(Path(ram).absolute()) + '/' + ram
# path_gpu = str(Path(gpu).absolute()) + '/' + gpu
if cmd[1] == "main_frequentist.py":
cmd2 = ['./'+cpu_watt, "freq_{}_cpu_watts".format(wide)]
cmd3 = ['./'+ram, "freq_{}_ram_use".format(wide)]
cmd4 = ['./'+gpu, "freq_{}_flop_app".format(wide)]
cmd2 = ["./" + cpu_watt, f"freq_{wide}_cpu_watts_{cfg['data']}"]
cmd3 = ["./" + ram, f"freq_{wide}_ram_use_{cfg['data']}"]
cmd4 = ["./" + gpu, f"freq_{wide}_flop_app_{cfg['data']}"]
elif cmd[1] == "main_bayesian.py":
cmd2 = ['./'+cpu_watt, "bayes_{}_cpu_watts".format(wide)]
cmd3 = ['./'+ram, "bayes_{}_ram_use".format(wide)]
cmd4 = ['./'+gpu, "bayes_{}_flop_app".format(wide)]
cmd2 = ["./" + cpu_watt, f"bayes_{wide}_cpu_watts_{cfg['data']}"]
cmd3 = ["./" + ram, f"bayes_{wide}_ram_use_{cfg['data']}"]
cmd4 = ["./" + gpu, f"bayes_{wide}_flop_app_{cfg['data']}"]
path = sub.check_output(['pwd'])
path = sub.check_output(["pwd"])
path = path.decode()
path = path.replace('\n', '')
path = path.replace("\n", "")
startWattCounter = 'python ' + path + '/amd_sample_draw.py'
startWattCounter = "python " + path + "/amd_sample_draw.py"
p1 = sub.Popen(cmd)
p2 = sub.Popen(startWattCounter.split(), stdin=sub.PIPE, stdout=sub.PIPE,
stderr=sub.PIPE)
p2 = sub.Popen(
startWattCounter.split(), stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE
)
p3 = sub.Popen(cmd2, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)
p4 = sub.Popen(cmd3, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)
p5 = sub.Popen(cmd4, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)

View File

@ -1,3 +1,4 @@
# import math
import pickle
from time import sleep
@ -11,28 +12,69 @@ with open("configuration.pkl", "rb") as file:
break
def non_decreasing(L):
return all(x <= y for x, y in zip(L, L[1:]))
def non_decreasing(lst: list):
"""
Check that a list is non decreasing
"""
return all(x <= y for x, y in zip(lst, lst[1:]))
def non_increasing(L):
return all(x >= y for x, y in zip(L, L[1:]))
def non_increasing(lst):
"""
Check that a list is non inreasing
"""
return all(x >= y for x, y in zip(lst, lst[1:]))
def monotonic(L):
return non_decreasing(L) or non_increasing(L)
def monotonic(lst):
"""
Check that a list is monotonic
"""
return non_decreasing(lst) or non_increasing(lst)
def strictly_increasing(L):
return all(x < y for x, y in zip(L, L[1:]))
def strictly_increasing(lst):
"""
Check that a list is strictly inreasing
"""
return all(x < y for x, y in zip(lst, lst[1:]))
def strictly_decreasing(L):
return all(x > y for x, y in zip(L, L[1:]))
def strictly_decreasing(lst):
"""
Check that a list is strictly decreasing
"""
return all(x > y for x, y in zip(lst, lst[1:]))
def strictly_monotonic(L):
return strictly_increasing(L) or strictly_decreasing(L)
def strictly_monotonic(lst):
"""
Check that a list is strictly monotonic
"""
return strictly_increasing(lst) or strictly_decreasing(lst)
def count_parameters(model):
"""Counts model amount of trainable parameters"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def efficiency_stop(model, accuracy, batch, sensitivity=0.001):
"""
This function stops when a certain amount of generalization takes place
taking into account the model efficiency
"""
try:
energy = total_watt_consumed(cfg["pickle_path"])
except Exception as e:
sleep(3)
energy = total_watt_consumed(cfg["pickle_path"])
efficiency = accuracy / energy
print(f"Current Efficiency: {1 - efficiency}")
no_parameters = count_parameters(model)
if (efficiency * no_parameters / (batch / 2) >= sensitivity) and (accuracy >= 0.5):
return 1
return 0
def e_stop(
@ -42,6 +84,9 @@ def e_stop(
patience: int = 4,
sensitivity: float = 1e-9,
):
"""
This function stops training early
"""
early_stopping.append(train_acc)
if patience in (0, 1):
print("Stopping Early")
@ -69,7 +114,7 @@ def energy_bound(threshold: float = 100000.0):
except Exception as e:
sleep(3)
energy = total_watt_consumed(cfg["pickle_path"])
print("Energy used: {}".format(energy))
print(f"Energy used: {energy}")
if energy > threshold:
print("Energy bound achieved")
return 1
@ -77,6 +122,7 @@ def energy_bound(threshold: float = 100000.0):
def accuracy_bound(train_acc: float, threshold: float = 0.99):
"""Stops training when a specified amount of accuracy is achieved"""
if train_acc >= threshold:
print("Accuracy bound achieved")
return 1