Commit Graph

1597 Commits

Author SHA1 Message Date
pranjaldatta
197a1a70c0 added BostonHousing dataset and testing 2020-02-07 03:47:19 +05:30
CarloLucibello
6499344af3 nograd for onecold, onehot, onehotbatch 2020-02-06 15:41:46 +01:00
Adarsh Kumar
7710bb0b4b
Removed spurious promotions 2020-02-06 01:06:41 +05:30
Adarsh Kumar
b5184553d4
Error correction in mae 2020-02-05 23:32:55 +05:30
Adarsh Kumar
643086c8db
Updated squared_hinge 2020-02-05 22:40:07 +05:30
Adarsh Kumar
7ac647a7ac
Added loss functions 2020-02-05 22:29:15 +05:30
Tim Besard
d88f63adb4 Remove unused imports. 2020-01-29 12:15:41 +01:00
bors[bot]
d1edd9b16d
Merge #680
680: Added new loss functions. r=thebhatman a=thebhatman

I have added the KL Divergence Loss function, Poisson loss function, Logcosh loss, and Hinge loss function.

Co-authored-by: Manjunath Bhat <manjunathbhat9920@gmail.com>
Co-authored-by: thebhatman <manjunathbhat9920@gmail.com>
2020-01-13 15:46:25 +00:00
Mike J Innes
17732e7023 restructure; closes #747 2020-01-06 11:53:47 +00:00
Kyle Daruwalla
0cdd11c0dc Added tests for varying padding, stride, and dilation with outdims. 2019-12-07 14:05:50 -06:00
Kyle Daruwalla
a64378b112 Switched to using NNlib for conv.jl outdims. 2019-12-07 13:21:26 -06:00
Kyle Daruwalla
6265b1fa39 Added tests for outdims 2019-12-05 22:54:25 -06:00
Kyle Daruwalla
31dda0ce6c Updated with all basic and conv layers outdims 2019-12-05 21:57:10 -06:00
Kyle Daruwalla
b4ed16ad9c Added outdims for some basic layers 2019-12-03 22:48:48 -06:00
Fredrik Bagge Carlson
e67f09c06d Correct some comments in decay docs 2019-12-03 15:32:23 +08:00
Fredrik Bagge Carlson
6e94e59afd Improve docs for decay optimisers 2019-12-03 15:27:44 +08:00
bors[bot]
90a38a3201
Merge #937
937: Fix Glorot initialization, add He initialization r=MikeInnes a=Sleort

Should fix #442 .
Adds He weight initialization as a bonus :-)

Co-authored-by: Troels Arnfred Bojesen <tr-ab@online.no>
2019-11-26 16:17:06 +00:00
bors[bot]
fb4a48f970
Merge #943
943: Fixes #900 r=MikeInnes a=dhairyagandhi96

Thoughts on the test?

cc @MikeInnes

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2019-11-26 15:09:27 +00:00
Dhairya Gandhi
59bb0d81b0 add TODO 2019-11-26 16:23:09 +05:30
Mike J Innes
4c69b44a7c
Merge pull request #940 from matsueushi/feature/cuda-logitbc
Fix logitbinarycrossentropy on CuArrays
2019-11-26 10:18:07 +00:00
Tim Besard
fbb377a7b4
Merge pull request #941 from FluxML/tb/include_during_precompile
Don't include the CUDA module during precompilation.
2019-11-24 08:55:43 +01:00
Dhairya Gandhi
5f21238d1a no grad dims helper 2019-11-24 13:25:02 +05:30
Tim Besard
4ece13c649 Don't include the CUDA module during precompilation.
If we do, we could end up replacing it at runtime.
2019-11-22 18:03:51 +01:00
matsueushi
a0314ce682 Fix logitbinarycrossentropy on CuArrays 2019-11-22 05:23:24 +00:00
Troels Arnfred Bojesen
af96a197c1 Fix Glorot initialization
Should fix #442
2019-11-20 13:20:42 +09:00
Mike J Innes
5839e166f6
Merge pull request #860 from dsweber2/activations
Activations
2019-11-19 16:44:25 +00:00
Tim Besard
2fa3e5673e
Merge pull request #924 from FluxML/tb/cuda_init
CUDA package initialization improvements
2019-11-19 16:48:45 +01:00
Tim Besard
c45cec4cba Simplify warning. 2019-11-19 16:05:41 +01:00
Tim Besard
69bf84278f Remove wrong warning. 2019-11-19 15:53:43 +01:00
Mike J Innes
4f73e434a4
Merge pull request #935 from baggepinnen/patch-4
Fix AMSGrad on GPU
2019-11-19 12:58:37 +00:00
Troels Arnfred Bojesen
2b80573248 Fix Glorot initialization, add He initialization
Should fix #442 .
Adds He weight initialization as a bonus :-)
2019-11-19 18:16:29 +09:00
Fredrik Bagge Carlson
2da22f31f0
Avoid unnecessary conversion
This initialization works for both cpu and gpu
2019-11-19 16:31:04 +08:00
Fredrik Bagge Carlson
df7ffb0ef8
Fix AMSGrad on GPU
The previous initialization created a CPU array. Now, the same type of array as `x` is created.
2019-11-19 16:27:44 +08:00
Troels Arnfred Bojesen
4530ac65c7 Fix Glorot initialization, add He initialization
Should fix the issue reported at https://github.com/FluxML/Flux.jl/issues/442 .
Adds He weight initialization as a bonus :-)
2019-11-19 16:50:40 +09:00
dsweber2
dea29532ef Merge branch 'master' into activations 2019-11-15 17:19:43 -08:00
dsweber2
20eb840882 keeping activations separate 2019-11-15 12:03:08 -08:00
dsweber2
58c794702d simpler test 2019-11-14 14:05:53 -08:00
dsweber2
0fe3ac4e77 bring activations into function call 2019-11-14 13:40:52 -08:00
dsweber2
6475f6a43e recursive way of doing activations 2019-11-14 13:40:52 -08:00
dsweber2
99679f7e16 deal with empty Chain 2019-11-14 13:40:52 -08:00
dsweber2
d0202a2945 adding the extra commits broke the accumulate version 2019-11-14 13:40:52 -08:00
dsweber2
cdaaca8cfa make activations zygote friendly 2019-11-14 13:40:29 -08:00
janEbert
3dceef427f Fix binarycrossentropy on CuArrays 2019-11-08 16:48:11 +01:00
Tim Besard
a82b76cf24 Conditionally include the CUDNN glue code. 2019-11-04 15:27:11 +01:00
Tim Besard
39ab740fb7 Check for CUDA availability at run time. 2019-11-02 11:18:06 +01:00
janEbert
7b41bc4ab5 Change gate function to view instead of copy
Only for vector input as copying a matrix may be more efficient due to
caching. A matrix is sliced per row, meaning the view will not be
aligned.
2019-10-24 12:45:22 +02:00
bors[bot]
645aa04464
Merge #898
898: Fix problem in crossentropy breaking GPU compilation r=MikeInnes a=kshyatt

Trying to run this simple example
```
using Flux, CuArrays
using Flux: crossentropy
model = Chain(
        Dense(728, 128, σ),
        LSTM(128, 256),
        LSTM(256, 128),
        Dense(128, 10),
        softmax) |> gpu
data = [rand(728) for i in 1:100];
out  = [rand(10) for i in 1:100];
loss(x, y) = crossentropy(model(x), y);
Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())
```
Old version of `crossentropy`:
```
ERROR: GPU compilation of #23(CuArrays.CuKernelState, CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global}, Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}) failed
KernelError: passing and using non-bitstype argument

Argument 4 to your kernel function is of type Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}.
That type is not isbits, and such arguments are only allowed when they are unused by the kernel.  .args is of type Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}} which is not isbits.
    .1 is of type Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}} which is not isbits.
      .x is of type Array{Float32,1} which is not isbits.


Stacktrace:
 [1] check_invocation(::CUDAnative.CompilerJob, ::LLVM.Function) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/validation.jl:70
 [2] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:187 [inlined]
 [3] macro expansion at /mnt/home/khyatt/.julia/packages/TimerOutputs/7zSea/src/TimerOutput.jl:216 [inlined]
 [4] #codegen#136(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.codegen), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:186
 [5] #codegen at ./none:0 [inlined]
 [6] #compile#135(::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::typeof(CUDAnative.compile), ::Symbol, ::CUDAnative.CompilerJob) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/compiler/driver.jl:47
 [7] #compile#134 at ./none:0 [inlined]
 [8] #compile at ./none:0 [inlined] (repeats 2 times)
 [9] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:389 [inlined]
 [10] #cufunction#176(::Nothing, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(CUDAnative.cufunction), ::GPUArrays.var"#23#24", ::Type{Tuple{CuArrays.CuKernelState,CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
 [11] cufunction(::Function, ::Type) at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:357
 [12] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:174 [inlined]
 [13] macro expansion at ./gcutils.jl:91 [inlined]
 [14] macro expansion at /mnt/home/khyatt/.julia/dev/CUDAnative/src/execution.jl:171 [inlined]
 [15] _gpu_call(::CuArrays.CuArrayBackend, ::Function, ::CuArray{Float32,1}, ::Tuple{CuArray{Float32,1},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64}},typeof(*),Tuple{Base.Broadcast.Extruded{Array{Float32,1},Tuple{Bool},Tuple{Int64}},Base.Broadcast.Broadcasted{Base.Broadcast.ArrayStyle{CuArray},Nothing,typeof(conj),Tuple{Base.Broadcast.Extruded{CuArray{Float32,1},Tuple{Bool},Tuple{Int64}}}}}}}, ::Tuple{Tuple{Int64},Tuple{Int64}}) at /mnt/home/khyatt/.julia/dev/CuArrays/src/gpuarray_interface.jl:60
 [16] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:151 [inlined]
 [17] gpu_call at /mnt/home/khyatt/.julia/dev/GPUArrays/src/abstract_gpu_interface.jl:128 [inlined]
 [18] copyto! at /mnt/home/khyatt/.julia/dev/GPUArrays/src/broadcast.jl:48 [inlined]
 [19] copyto! at ./broadcast.jl:863 [inlined]
 [20] copy at ./broadcast.jl:839 [inlined]
 [21] materialize at ./broadcast.jl:819 [inlined]
 [22] (::Zygote.var"#1310#1311"{CuArray{Float32,1},CuArray{Float32,1}})(::Array{Float32,1}) at /mnt/home/khyatt/.julia/dev/Zygote/src/lib/broadcast.jl:68
```
New version:
```
julia> Flux.train!(loss, params(model), zip(gpu.(data), gpu.(out)), ADAM())

julia> # everyone finished happily and went on with their lives
```

Co-authored-by: Katharine Hyatt <khyatt@flatironinstitute.org>
2019-10-23 14:31:53 +00:00
Katharine Hyatt
e0c1c0e057 Fix problem in crossentropy breaking GPU compilation 2019-10-22 14:00:57 -04:00
bors[bot]
fa5737fb5c
Merge #904
904: Documenting Optimiser Interface r=MikeInnes a=MikeInnes

I needed to add one extra commit to #875 before merging.

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
Co-authored-by: Dhairya Gandhi <dhairya@juliacomputing.com>
Co-authored-by: Mike Innes <mike.j.innes@gmail.com>
2019-10-22 12:38:19 +00:00
Mike Innes
7ead2d6c7b typo 2019-10-22 13:36:39 +01:00
Katharine Hyatt
b8b4bc48b9 Backticks and examples for normalise 2019-10-21 10:31:44 -04:00
Dhairya Gandhi
4477dd8d54 reviews 2019-10-10 20:27:11 +05:30
Dhairya Gandhi
f19066ee29 more docstrings 2019-10-10 16:48:12 +05:30
Dhairya Gandhi
fe52689cfe in depth docstrings 2019-10-09 16:16:11 +05:30
thebhatman
96a23c295c Changes to docs 2019-10-09 14:53:03 +05:30
bors[bot]
af0dcb2c63
Merge #882
882: Check if CUDA availability changed during init. r=MikeInnes a=maleadt

With this PR, Flux checks using CUDAapi if CUDA is available during initialization, and forces recompilation if that does not agree with what was decided during precompilation. This avoids the scenario where Flux was precompiled without GPU support, consequently not allowing use of the GPU even if the user fixed his CUDA/GPU set-up because that does not force recompilation (and we can't add precompilation dependencies on stuff that doesn't exist).

However, we can't do the same for the case where we have a GPU/CUDA but CuArrays fails to import (checking if it imports during `__init__` would be much too expensive, if even possible), so this PR removes support for having CUDA/a GPU but CuArrays being broken. That's a little risky now that Flux depends on CuArrays, but the package is pretty mature and I haven't seen many bug reports failing to load it recently.

Fixes https://github.com/FluxML/Flux.jl/pull/852#issuecomment-538028314

cc @MikeInnes @xukai92

Co-authored-by: Tim Besard <tim.besard@gmail.com>
2019-10-08 13:24:49 +00:00
Dhairya Gandhi
b503741651 expanded docstrings 2019-10-04 14:46:03 +05:30
Tim Besard
8aea15e6e0 Demote to const variables. 2019-10-03 21:28:55 +02:00
Tim Besard
2369b2b3fd Add an environment variable to disable CUDA usage. 2019-10-03 21:27:54 +02:00
Tim Besard
63d196aa37 Check if CUDA availability changed during init. 2019-10-03 20:05:32 +02:00
thebhatman
ec886c8ce8 Added docstring for hinge loss 2019-10-03 21:13:09 +05:30
Manjunath Bhat
2b30319a55
Merge branch 'master' into patch-6 2019-09-30 21:05:02 +05:30
thebhatman
6e289ef939 Merge branch 'patch-6' of https://github.com/thebhatman/Flux.jl into patch-6 2019-09-30 20:55:44 +05:30
Filippo Vicentini
606fe58854
Use <:Number 2019-09-29 12:33:02 +02:00
Filippo Vicentini
14e94c291e
Make it actually work 2019-09-29 12:28:01 +02:00
Filippo Vicentini
d91677f651
Fix params! to work with complex numbers 2019-09-29 12:23:41 +02:00
Dhairya Gandhi
8013c728b1 clearer optimiser docstrings 2019-09-28 16:09:00 +05:30
Dhairya Gandhi
0175485a80 fixup 2019-09-27 22:08:25 +05:30
Dhairya Gandhi
8bb0db7d0c opt docstrings 2019-09-27 22:04:53 +05:30
Mike Innes
b90b02872f Merge branch 'master' into tb/cuarrays_dnn 2019-09-27 14:58:32 +01:00
Mike Innes
46bc8e5e64 move pullbacks to CuArrays 2019-09-26 17:14:18 +01:00
Michael Abbott
806e0c5c57 line 2019-09-25 15:20:13 +02:00
Michael Abbott
4245d9acad eg 2019-09-25 15:18:40 +02:00
Michael Abbott
2de84ce79f simplify 2019-09-25 13:59:32 +02:00
Michael Abbott
1a1a96571a +Chain 2019-09-25 13:47:29 +02:00
Michael Abbott
19830c71b1 fix printing of SkipConnection 2019-09-25 13:37:01 +02:00
bors[bot]
acb6a89245
Merge #865
865: Functor r=MikeInnes a=MikeInnes

This refactors our current `@treelike` infrastructure. It somewhat formalises what we're doing around the idea of a Flux model as a functor, i.e. something that can be mapped over.

This is much more flexible than what we had before, and avoids some issues. It allows layers to have state that isn't mappable; it allows for dispatch when walking the tree, which means layers like `BatchNorm` can have non-trainable parameters; and it also allows for zipped mapping like `fmap(+, xs, ys)`, which isn't implemented yet but will be useful for the new optimisers work.

The main downside is that the term `functor` has been previously used in the Julia community as a malapropism for "thing that behaves like a function"; but hopefully this can start to reduce that usage.

Co-authored-by: Mike Innes <mike.j.innes@gmail.com>
2019-09-24 16:36:10 +00:00
Dhairya Gandhi
822288d63d merge conflicts 2019-09-24 00:31:44 +05:30
Dhairya Gandhi
6846551f57 fix cuda init 2019-09-22 22:02:05 +05:30
Mike Innes
b60df53ba1 pkg up 2019-09-19 18:33:33 +01:00
Mike Innes
cabb81e30b internal rename 2019-09-19 15:53:31 +01:00
Mike Innes
b951377426 fix normalisation layer params 2019-09-19 15:33:24 +01:00
Mike Innes
6529dbcbe6 functor refactor 2019-09-19 15:22:11 +01:00
Mike Innes
2c71fc282b rename functor.jl 2019-09-19 14:15:28 +01:00
Mike Innes
c5e56b7e04 move setweights and copy_transpose 2019-09-17 17:22:35 +01:00
Mike Innes
5baebf48f4 Merge branch 'master' into tb/cuarrays_dnn 2019-09-17 16:17:09 +01:00
Mike Innes
368b1f53b4 tuple support 2019-09-17 15:49:39 +01:00
Mike Innes
b348b20452 cudnn rnns + implicit gradients 2019-09-17 15:41:42 +01:00
Mike Innes
fe57215b7e test fillarray gradients 2019-09-17 15:21:03 +01:00
Tim Besard
4942d7fcfd Move functionality over to CuArrays. 2019-09-13 08:21:45 +02:00
Tim Besard
1e7ff4f65d Query the worksize. 2019-09-13 08:04:05 +02:00
Tim Besard
04fce70019 Move low-level CUDNN wrappers to CuArrays. 2019-09-13 08:04:05 +02:00
Mike Innes
de2049450b docs mostly fixed 2019-09-10 15:17:07 +01:00
Mike Innes
c8d460ff84 doctests passing 2019-09-10 15:02:43 +01:00
Mike J Innes
67c38b3099 Merge branch 'master' into zygote 2019-09-06 15:18:58 +01:00
thebhatman
ecc9ce9d64 Gradient on AlphaDropout now working 2019-09-06 16:34:19 +05:30
Mike J Innes
3c1ac84676
Merge pull request #842 from baggepinnen/patch-4
Add RADAM optimizer
2019-09-02 14:36:40 +01:00
Manjunath Bhat
c3cc4bf966
Remove double docstring 2019-08-31 01:35:40 +05:30
thebhatman
2f1a187665 Update AlphaDropout 2019-08-31 01:28:58 +05:30
Fredrik Bagge Carlson
cb3bfd72f3
Export RADAM from Optimise 2019-08-29 07:46:45 +08:00