Compare commits

...

216 Commits

Author SHA1 Message Date
bors[bot] 7035ee9bea
Merge #1238
1238: Fix inline code block r=dhairyagandhi96 a=harryscholes

### PR Checklist

- [ ] Tests are added
- [ ] Entry in NEWS.md
- [x] Documentation, if applicable
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).


Co-authored-by: harryscholes <harryscholes@gmail.com>
2020-06-19 08:28:41 +00:00
harryscholes 57efd7fead Fix inline code block 2020-06-19 09:24:44 +01:00
bors[bot] 19b45b49d3
Merge #1221
1221: DataLoader with NamedTuple r=CarloLucibello a=cossio

Just a couple of small changes, so that `DataLoader` can be created with a `NamedTuple` of tensors instead of `Tuple`. This way the tensors can be referred to by name. For example

```
train_loader = DataLoader((images = Xtrain, labels = Ytrain), batchsize=16)
batch = first(train_loader)
y = model(batch.images)
logitcrossentropy(y, batch.labels)
```

If we only use tuples, then in datasets with multiple tensors one has to be careful about the order in which the tensors are fed into the `DataLoader` constructor and be consistent with this elsewhere. With `NamedTuples` one just have to be consistent about the names used, which I think is a minor improvement.

CC @CarloLucibello 

### PR Checklist

- [x] Tests are added
- [x] Entry in NEWS.md
- [x] Documentation, if applicable

I don't think this qualifies as an API change. It's just a minor feature addition. So final review probably not required.

- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).


Co-authored-by: cossio <j.cossio.diaz@gmail.com>
Co-authored-by: cossio <cossio@users.noreply.github.com>
2020-06-16 17:21:28 +00:00
bors[bot] 254e4a7058
Merge #1231
1231: use `ntuple` in conv r=MikeInnes a=MikeInnes

This is the right abstraction over `map`, and in particular is a bit easier to compile away in some cases. 

As this is a trivial change from Flux's perspective it's not easy to test here, but there are downstream tests in XLA.jl.

Co-authored-by: Mike J Innes <mike.j.innes@gmail.com>
2020-06-16 13:04:20 +00:00
Mike J Innes 9f931dd7fa use `ntuple` in conv 2020-06-16 14:02:24 +01:00
cossio 9078f85096 revert selectdim
selectdim can lead to type instability, see https://discourse.julialang.org/t/why-selectdim-is-type-instable/25271/5
2020-06-16 13:32:27 +02:00
cossio 1dbaf32810 DataLoader type inference tests 2020-06-16 13:32:27 +02:00
cossio cb34bb848b simplify _getobs 2020-06-16 13:32:27 +02:00
cossio 75692161a7 Apply suggestions from code review
accept suggested changes

Co-authored-by: Carlo Lucibello <carlo.lucibello@gmail.com>
2020-06-16 13:32:27 +02:00
cossio 909a55ac10 news and docs 2020-06-16 13:32:27 +02:00
cossio 02ee6ba426 DataLoader with NamedTuple 2020-06-16 13:31:29 +02:00
bors[bot] 97406507fd
Merge #1218
1218: Require weight and bias to be AbstractArrays r=CarloLucibello a=oxinabox

closes #1199
While in theory someone could be using Dense with weights and biases that are not abstract arrays, I would be surprised.
So allowing it is just leaving a food-gun laying around.
If it is common then we can instead close #1199 by adding a special constructor for `Number` subtypes that error if they are not integers, or something a long those lines.

### PR Checklist

- [x] Tests are added
- [x] Entry in NEWS.md

I think this is a bug-fix thus the following are not required:

- [ ] Documentation, if applicable
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).


Co-authored-by: Lyndon White <lyndon.white@invenialabs.co.uk>
Co-authored-by: Lyndon White <oxinabox@ucc.asn.au>
2020-06-15 15:21:21 +00:00
Lyndon White e61787c1c8
Update test/layers/basic.jl 2020-06-12 13:58:10 +01:00
Lyndon White 601f842eaf
bonus test 2020-06-11 23:17:40 +01:00
bors[bot] 99ec30c8c2
Merge #1220
1220: CompatHelper: bump compat for "Adapt" to "2.0" r=CarloLucibello a=github-actions[bot]

This pull request changes the compat entry for the `Adapt` package from `1` to `1, 2.0`.

This keeps the compat entries for earlier versions.

Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request.

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2020-06-11 09:54:46 +00:00
github-actions[bot] fbfc973011 CompatHelper: bump compat for "Adapt" to "2.0" 2020-06-11 00:18:47 +00:00
Lyndon White a1623aca76
move into 0.11 news 2020-06-10 12:39:00 +01:00
Lyndon White 15c7354c4e
Make release as DEV 2020-06-10 12:38:33 +01:00
Lyndon White 97b0aa4d36 bump version 2020-06-10 12:14:47 +01:00
Lyndon White cf90517a8a update news.md 2020-06-10 12:14:19 +01:00
Lyndon White df84628c29 Require weight and bias to be AbstractArrays 2020-06-10 12:06:57 +01:00
bors[bot] e1f80d4627
Merge #1213
1213: Fixing indentation in train! docstring r=CarloLucibello a=natema

One code block is not correctly displayed in the doc of [Flux.Optimise.train!
](https://fluxml.ai/Flux.jl/stable/training/training/#Flux.Optimise.train!). 
Based on the previous code block, I guess it's an indentation problem.


Co-authored-by: natema <natema@users.noreply.github.com>
2020-06-08 18:29:46 +00:00
bors[bot] a7bbd3d35b
Merge #1152
1152: extend dataloader r=CarloLucibello a=CarloLucibello

cfr discussion in #1149. Currently DataLoader interface supports

1. `for x in DataLoader(X)`
2. `for (x, y) in DataLoader(X, Y)`

This PR adds

3. `for (x,) in DataLoader((X,))`
4. `for (x, y) in DataLoader((X, Y))`

Edit:
the constructor in 2. is removed in this PR

Co-authored-by: CarloLucibello <carlo.lucibello@gmail.com>
2020-06-08 18:01:06 +00:00
CarloLucibello 0cf46432cf cleanup 2020-06-08 19:59:34 +02:00
natema 70bbf18180
Fixing indentation in train! docstring
One code block is not correctly displayed in the doc of [Flux.Optimise.train!
](https://fluxml.ai/Flux.jl/stable/training/training/#Flux.Optimise.train!). 
Based on the previous code block, I guess it's an indentation problem.
2020-06-07 15:44:04 +02:00
bors[bot] d9b07475b0
Merge #1129
1129: Added dropgrad in huber_loss r=CarloLucibello a=HenriDeh

Workaround to prevent `iterate(::nothing)` when working with CuArrays. See issue #1128

Co-authored-by: HenriDeh <47037088+HenriDeh@users.noreply.github.com>
2020-06-06 17:21:19 +00:00
bors[bot] 9ebbe8cb4c
Merge #1141
1141: Speedup matmul of CuMatrix and OneHotMatrix r=CarloLucibello a=AStupidBear

This solves #189.

```julia
julia> using Flux


julia> using Flux: CuArrays

julia> A = zeros(300, 10000) |> gpu;

julia> B = Flux.onehotbatch(rand(1:10000, 256), 1:10000) |> gpu;

julia> A * B; CuArrays.@time A * B;
┌ Warning: Performing scalar operations on GPU arrays: This is very slow, consider disallowing these operations with `allowscalar(false)`
└ @ GPUArrays ~/shared/.julia/packages/GPUArrays/OXvxB/src/host/indexing.jl:43
  0.002824 seconds (951 CPU allocations: 38.156 KiB) (2 GPU allocations: 301.000 KiB, 2.32% gc time of which 46.42% spent allocating)

julia> import Base: *

julia> A::AbstractMatrix * B::Flux.OneHotMatrix = @inbounds A[:, map(x->x.ix, B.data)]
* (generic function with 522 methods)

julia> A * B; CuArrays.@time A * B;
  0.000343 seconds (169 CPU allocations: 5.000 KiB) (2 GPU allocations: 301.000 KiB, 15.53% gc time of which 65.97% spent allocating)
```

Co-authored-by: Yao Lu <luyaocns@gmail.com>
2020-06-06 17:00:01 +00:00
CarloLucibello b1f226eb34 add news 2020-06-06 18:15:04 +02:00
CarloLucibello a643cb6758 extend dataloader 2020-06-06 18:02:03 +02:00
bors[bot] 792a1c54f8
Merge #1211
1211: Fixing syntax in onehot docstring r=CarloLucibello a=natema

`otherwise, it will error` -> `otherwise, it will raise an error`


Co-authored-by: natema <natema@users.noreply.github.com>
2020-06-06 15:02:40 +00:00
natema 8f6aed5770
Fixing syntax in onehot docstring
`otherwise, it will error` -> `otherwise, it will raise an error`
2020-06-05 18:20:50 +02:00
bors[bot] 22d5e318e5
Merge #1192
1192: Improve `restructure` performance r=dhairyagandhi96 a=MikeInnes

A small change, but it significantly improves the performance on the following test case:

```julia
julia> VERSION
v"1.5.0-DEV.876"

julia> using Flux, DiffEqFlux, BenchmarkTools

julia> using Flux: mse

julia> fastdense = FastDense(784, 32, tanh);

julia> p = initial_params(fastdense);

julia> dense = Dense(784, 32, tanh);

julia> p,re = Flux.destructure(dense);

julia> x = rand(Float32, 784, 10);

julia> y = rand(Float32, 32, 10);

julia> @btime gradient((x,p) -> mse(fastdense(x, p), y), x, p);
  505.530 μs (87 allocations: 240.73 KiB)

julia> @btime gradient((x,p) -> mse(re(p)(x), y), x, p);
  107.796 μs (139 allocations: 340.94 KiB)
```

Co-authored-by: Mike J Innes <mike.j.innes@gmail.com>
2020-06-05 14:53:11 +00:00
bors[bot] 71ebd51e45
Merge #1208
1208: Fixing output format for `onehot` r=dhairyagandhi96 a=natema

Currently `Flux.OneHotVector` is displayed as a binary vector (0/1) rather than a boolean one (true/false). This is also shown in successive examples in the same page. 
I fixed the `onehot(:b, [:a, :b, :c])` and `onehot(:c, [:a, :b, :c])` outputs in the first example of the page accordingly.


Co-authored-by: natema <natema@users.noreply.github.com>
2020-06-05 09:17:12 +00:00
bors[bot] b5a73f8532
Merge #1207
1207: Fixing typo in docs r=dhairyagandhi96 a=natema

`what ever` -> `whatever`


Co-authored-by: natema <natema@users.noreply.github.com>
2020-06-05 09:00:06 +00:00
natema 48d6f2d0c0
Fixing output format for `onehot`
`Flux.OneHotVector` is displayed as a binary vector (0/1) rather than a boolean (true/false) one, as is also shown in successive examples in the same page, so I fixed the `onehot(:b, [:a, :b, :c])` and `onehot(:c, [:a, :b, :c])` output as given by the current Julia version 1.4.2.
2020-06-03 17:03:08 +02:00
natema 2c4b1e521e
Fixing typo in docs
`what ever` -> `whatever`
2020-06-02 19:20:41 +02:00
bors[bot] ca1b1b2c7c
Merge #1206
1206: Fixing ambiguous remark in Preserve inputs' types r=dhairyagandhi96 a=natema

This PR is based on the [discussion in the forum](https://discourse.julialang.org/t/not-clear-what-0-01f0x-is-in-the-flux-docs/40553?u=mathematics) on the ambiguity of `0.01f0x` in the line
> While one could change the activation function (e.g. to use `0.01f0x`)

Co-authored-by: natema <natema@users.noreply.github.com>
2020-06-02 17:09:58 +00:00
natema a24f46b606
Fixing ambiguous remark in Preserve inputs' types
This PR is based on the [discussion in the forum](https://discourse.julialang.org/t/not-clear-what-0-01f0x-is-in-the-flux-docs/40553?u=mathematics) on the ambiguity of `0.01f0x` in the line
> While one could change the activation function (e.g. to use `0.01f0x`)
2020-06-02 18:48:07 +02:00
Mike J Innes 089ec0832c improved restructure adjoint 2020-05-27 12:28:22 +01:00
bors[bot] ddd0f4e747
Merge #1191
1191: Pull Request Template r=MikeInnes a=MikeInnes

Hopefully makes it a little clearer what the requirements are, which will lead to easier review, and encourage things like NEWS.md that we want to be better in sync.

cc @dhairyagandhi96 and @CarloLucibello for thoughts.

Co-authored-by: Mike J Innes <mike.j.innes@gmail.com>
2020-05-27 11:15:26 +00:00
Mike J Innes e10818bbad
Update pull_request_template.md 2020-05-27 12:12:13 +01:00
Mike J Innes 8c3a80c940
Create pull_request_template.md 2020-05-26 12:52:28 +01:00
bors[bot] 85c39e2309
Merge #1190
1190: Correcting advanced.md r=dhairyagandhi96 a=Sleort

To make the example consistent, it should be 
```
julia> Flux.trainable(a::Affine) = (a.W,)
```
not
```
julia> Flux.trainable(a::Affine) = (a.W, a.b)
```

Co-authored-by: Troels Arnfred Bojesen <tr-ab@online.no>
2020-05-25 14:47:42 +00:00
Troels Arnfred Bojesen 17bb00a3fa
Correcting advanced.md
To make the example consistent, it should be 
```
julia> Flux.trainable(a::Affine) = (a.W,)
```
not
```
julia> Flux.trainable(a::Affine) = (a.W, a.b)
```
2020-05-25 23:33:09 +09:00
bors[bot] bd152ca099
Merge #1177
1177: Align ExpDecay implementation with documentation r=dhairyagandhi96 a=DrChainsaw

Fix for #1176 



Co-authored-by: DrChainsaw <Christian.kyril.skarby@gmail.com>
2020-05-21 14:33:20 +00:00
bors[bot] f343172daf
Merge #1185
1185: Add some news r=dhairyagandhi96 a=dhairyagandhi96

cc @CarloLucibello please add to this list as well

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-05-21 12:46:39 +00:00
bors[bot] 472e1fbf5e
Merge #957
957: Add some gradient checking tests on GPUs r=dhairyagandhi96 a=dhairyagandhi96

Good to add generic tests for tracking gradients through the various layers on the GPU.

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
Co-authored-by: Dhairya Gandhi <dhairya@juliacomputing.com>
2020-05-21 12:25:53 +00:00
Dhairya Gandhi 0801064d50 add comment on broken layers 2020-05-20 00:11:38 +05:30
Dhairya Gandhi c4409fa6d1 clearing failures 2020-05-19 23:54:18 +05:30
bors[bot] 87ba651add
Merge #1165
1165: Fix docstring of logitcrossentropy r=dhairyagandhi96 a=cossio

Since `y` is a logit, there is no log (see the diff).

Co-authored-by: cossio <cossio@users.noreply.github.com>
2020-05-19 11:07:15 +00:00
Dhairya Gandhi 55430e207d add news 2020-05-19 16:34:28 +05:30
bors[bot] 0b10f1a8df
Merge #1184
1184: Add some functions to docs r=dhairyagandhi96 a=dhairyagandhi96



Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-05-18 21:10:46 +00:00
DrChainsaw 9a24ee0bd7 Change intendation to 2 spaces 2020-05-18 21:52:40 +02:00
Dhairya Gandhi bdfe567519 add some layers to docs 2020-05-18 23:53:11 +05:30
bors[bot] b6a5dd7152
Merge #1133
1133: add ClipValue and ClipNorm r=CarloLucibello a=AStupidBear



Co-authored-by: Yao Lu <luyaocns@gmail.com>
2020-05-15 17:15:07 +00:00
Yao Lu 007586858c fix export merge conflict 2020-05-14 17:13:35 +08:00
Dhairya Gandhi fab53e0a01
Merge pull request #1179 from FluxML/compathelper/new_version/2020-05-13-00-13-17-919-1190174363
CompatHelper: add new compat entry for "Functors" at version "0.1"
2020-05-13 11:27:40 +05:30
github-actions[bot] 3fa9e91c41 CompatHelper: add new compat entry for "Functors" at version "0.1" 2020-05-13 00:13:46 +00:00
DrChainsaw e8433d0abe Align ExpDecay implementation with documentation 2020-05-12 22:50:17 +02:00
bors[bot] de39d1095b
Merge #1175
1175: xlogy broadcast adjoint r=MikeInnes a=MikeInnes

This is helpful for performance, since it avoids having to differentiate `xlogy` itself inside of a map.

Co-authored-by: Mike J Innes <mike.j.innes@gmail.com>
2020-05-12 17:10:58 +00:00
Mike J Innes f5a8900ffb xlogy broadcast adjoint 2020-05-12 17:29:35 +01:00
Mike J Innes bd43201f37
fix logitcrossentropy doc string 2020-05-12 16:18:29 +01:00
bors[bot] a84e08cf28
Merge #1174
1174: Functors r=MikeInnes a=MikeInnes

Just splits out the implementation to the [Functors](https://github.com/FluxML/Functors.jl) package, so the same traits can be used elsewhere (e.g. Optimisers.jl) without depending on all of Flux.

Co-authored-by: Mike J Innes <mike.j.innes@gmail.com>
2020-05-12 14:39:08 +00:00
Mike J Innes 22d29c9bfd released functors.jl 2020-05-12 15:33:14 +01:00
Dhairya Gandhi 36d3a9ce99
Merge pull request #1162 from aminya/patch-5
Update CompatHelper.yml
2020-05-10 14:21:14 +05:30
Yao Lu 5a9eb7411a cpu 2020-05-10 14:39:48 +08:00
Yao Lu 888f286c51 use @inbounds 2020-05-09 19:40:46 +08:00
Yao Lu 63cb70dd23 remove importing CuMatrix 2020-05-09 19:13:52 +08:00
Yao Lu 30648910c8 transfer onehot indices back to cpu 2020-05-09 19:10:46 +08:00
Yao Lu d1ad8db625 add to docs 2020-05-09 16:40:26 +08:00
bors[bot] d89ee6cdba
Merge #1167
1167: Update basics.md r=dhairyagandhi96 a=mipals

Removing superfluous ```using Flux```

Co-authored-by: Mikkel Paltorp Schmitt <mikkel.paltorp@gmail.com>
2020-05-08 11:38:22 +00:00
bors[bot] 0287abbf66
Merge #1166
1166: Fix crossentropy when some probabilities are zero r=dhairyagandhi96 a=cossio

Use a function `xlogy(x,y) = x * log(y)` that has the correct limit at `x=0`.

Before this PR:

```julia
julia> Flux.crossentropy([0.1,0.0,0.9], [0.1,0.0,0.9])
NaN
```

After this PR:

```julia
julia> Flux.crossentropy([0.1,0.0,0.9], [0.1,0.0,0.9])
0.3250829733914482
```

Co-authored-by: cossio <j.cossio.diaz@gmail.com>
2020-05-08 11:14:31 +00:00
cossio 17f54e4c6f bump version 2020-05-08 12:57:34 +02:00
cossio feb72d400a NaN 2020-05-07 12:44:32 +02:00
cossio 86d6555269 cufunc 2020-05-07 09:58:33 +02:00
Mikkel Paltorp Schmitt 40efa9df49
Update basics.md
Removing superfluous ```using Flux```
2020-05-06 13:41:56 +02:00
cossio 8314200c51 generic 2020-05-05 19:23:05 +02:00
cossio 06c1e20372 add tests 2020-05-05 19:05:04 +02:00
cossio 480473a81b xlogy 2020-05-05 18:33:50 +02:00
cossio 9e1fd883d5
Fix docstring of logitbinarycrossentropy and logitcrossentropy 2020-05-05 16:29:29 +02:00
Amin Yahyaabadi 70f76fd6db
Update CompatHelper.yml 2020-05-05 07:11:22 -05:00
bors[bot] c444226db5
Merge #1160
1160: Build docs on Julia 1.3 r=dhairyagandhi96 a=dhairyagandhi96

This causes red CI otherwise

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-05-04 12:59:25 +00:00
Dhairya Gandhi f2c66579ec yaml syntax fix 2020-05-04 18:01:33 +05:30
Dhairya Gandhi fc464f5ef8 build docs on Julia 1.3 2020-05-04 17:54:04 +05:30
bors[bot] 1e2476b3c2
Merge #1156
1156: Add correct overload for apply! in docs r=dhairyagandhi96 a=dhairyagandhi96

Maybe we should considering adding a `const` name that is better than `apply!` (or rename `apply!`) and export it, so folks can just overload `descriptive_apply_my_optimiser_rule!` rather than have to go to the sub-project `Flux.Optimise`?

Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-05-04 06:01:23 +00:00
Dhairya Gandhi d6a1ccd354 add correct overload for apply in docs 2020-05-03 16:56:39 +05:30
bors[bot] 5d9acc7e73
Merge #873
873: Make bias optional r=MikeInnes a=dhairyagandhi96

Addresses #868 



Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-05-01 13:28:15 +00:00
Mike J Innes 8f877f2dbf quick fix 2020-05-01 14:22:46 +01:00
Dhairya Gandhi 29215fa5d7 comment on possible future deprecations 2020-04-29 16:17:44 +05:30
Dhairya Gandhi 534809ae78 move zeros to its own file 2020-04-29 16:15:35 +05:30
Dhairya Gandhi 5086c0f4f0 merge conflicts 2020-04-29 16:11:39 +05:30
Yao Lu 114f63a214 norm(Δ) 2020-04-26 17:28:07 +08:00
Yao Lu eb6898ea19 speedup matmul of CuMatrix and OneHotMatrix 2020-04-25 23:22:46 +08:00
Yao Lu 7d6f711c6f Merge branch 'master' into clip 2020-04-25 22:18:58 +08:00
bors[bot] 9237cdaf5b
Merge #901
901: Add option for "Same" padding to conv and pooling layers r=dhairyagandhi96 a=DrChainsaw

Fixes #813 

This adds the possibility to set "pad=SamePad()" to automatically calculate the amount of padding to apply so that outputsize==inputsize (assuming stide == 1).

Comments on API more than welcome. I considered the following options:

* Call the type just Same and export it, but I was afraid to cause name collisions due to a too generic name
* Call the type Same and not export it
* Dispatch on type instead of instance (so that one can type pad=Same instead of pad=Same())
* Supply a method instead of a type, giving a similar API as above. 

Happy to change to any of the above or to anything else.

I don't think that same padding is common for pooling layers, but I added it just for the sake of consistency. It is a separate commit so it can easily be removed if not wanted.

Co-authored-by: DrChainsaw <Christian.kyril.skarby@gmail.com>
2020-04-25 04:39:18 +00:00
DrChainsaw 4e4f6d9d1f Change next version entry to 0.10.5 2020-04-24 22:07:57 +02:00
DrChainsaw deff98812a Add v0.11.0 entry and added samepadding option 2020-04-24 21:59:02 +02:00
DrChainsaw 1544f84bb9 Fix merge conflicts 2020-04-24 21:56:26 +02:00
Yao Lu 58a72ec879 Merge branch 'master' of https://github.com/FluxML/Flux.jl into clip 2020-04-22 01:29:13 +08:00
Yao Lu c4f5e83697 resolve conflict 2020-04-22 01:24:13 +08:00
Yao Lu 1dfec7f38b add test 2020-04-22 01:22:34 +08:00
Yao Lu def19b058e simplify docstrings 2020-04-21 10:56:38 +08:00
Yao Lu cc1dcd5590 rm requires 2020-04-20 20:02:29 +08:00
Yao Lu 68b84bba36 add LinearAlgebra 2020-04-20 19:54:44 +08:00
Yao Lu ba0fca5a19 remove onehot 2020-04-20 19:45:15 +08:00
Yao Lu b33c4b49be add ClipValue and ClipNorm 2020-04-20 19:41:10 +08:00
Yao Lu 427c55af92 speedup matmul of CuMatrix and OneHotMatrix 2020-04-20 19:11:57 +08:00
HenriDeh ac94754281
Update stateless.jl 2020-04-18 13:23:11 +02:00
bors[bot] cdada06472
Merge #1131
1131: Update glorot_normal doc r=dhairyagandhi96 a=AdarshKumar712

Just a minute correction in glorot_normal function doc.

Co-authored-by: Adarsh Kumar <45385384+AdarshKumar712@users.noreply.github.com>
2020-04-18 00:58:49 +00:00
Adarsh Kumar d53deb9132
Update glorot_normal doc 2020-04-18 03:19:32 +05:30
HenriDeh 1f2643c95c
Add dropgrad in huber_loss
Workaround for issue #1128
2020-04-17 13:34:04 +02:00
bors[bot] d49d121a65
Merge #1127
1127: Removed deprecated SGD exports r=dhairyagandhi96 a=bhvieira

Closes #1121 

Co-authored-by: Bruno Hebling Vieira <bruno.hebling.vieira@usp.br>
2020-04-16 13:28:00 +00:00
Bruno Hebling Vieira 2c9881bca6 Merge branch 'master' into removeSGD 2020-04-16 09:56:38 -03:00
Bruno Hebling Vieira db99e41959 Removed SGD exports 2020-04-16 09:50:41 -03:00
Mike J Innes a35335db00 update for functors.jl change 2020-04-14 15:21:45 +01:00
Mike J Innes 6eda279190 split out functor 2020-04-14 13:58:52 +01:00
bors[bot] 32e2435729
Merge #1123
1123: Fix doc indent r=dhairyagandhi96 a=matsueushi

Fix [docs for `update!`](https://fluxml.ai/Flux.jl/stable/training/optimisers/#Flux.Optimise.update!).

Co-authored-by: matsueushi <matsueushi@gmail.com>
2020-04-14 04:20:30 +00:00
matsueushi be92618473 Fix doc indent 2020-04-14 00:12:06 -04:00
bors[bot] 7a32a703f0
Merge #853
853: Improve docs r=CarloLucibello a=janEbert

If you disagree with any of the changes, please tell me what to reverse or fix.
I am unsure about the docstrings I added to `src/utils.jl` for `unsqueeze` and
the `[un]stack` functions so please give those a more detailed look.

Update Documenter.jl version for new features, fix deprecation warnings in
`docs/make.jl` and import Flux for all doctests.
Add missing docstrings to `src/utils.jl`, `src/layers/stateless.jl` and `src/data/`; add
these and other missing functions to Markdown docs.

Improve docstrings by...
   - fixing typos,
   - removing trailing or double whitespaces,
   - using `jldoctest` blocks where applicable,
   - fixing, updating or correctly setting up existing doctests,
   - improving consistency (for example, always use "# Examples" instead
     of other variants),
   - removing empty lines between docstrings and functions,
   - instead of mentioning keywords, put them into the docstring,
   - adding some missing but useful keywords,
   - adding references (`@ref`),
   - using LaTeX math where applicable, and
   - linking papers.

Debatable stuff that is untouched:
   - BE/AE s/z irregularities (e.g. "normalise" versus "normalize") since
     most papers use the AE version while the Flux source code was
     written with BE spelling.
   - Names of normalization functions are capitalized
     ("Batch Normalization" instead of "batch normalization").
   - Default values in argument lists have spaces around the equals sign (`arg = x` instead of `arg=x`).

Co-authored-by: janEbert <janpublicebert@posteo.net>
2020-04-06 13:47:42 +00:00
bors[bot] a9f8250b43
Merge #1110
1110: fix tests and new version r=CarloLucibello a=CarloLucibello

Add to set the Boston Housing dataset tests as broken due to as SSL certificate expiration problem wich is not our fault

Co-authored-by: Carlo Lucibello <carlo.lucibello@gmail.com>
2020-04-06 13:27:58 +00:00
janEbert 684570660a Update doctest version guard (1.2 -> 1.4)
And add the same to docs/make.jl
2020-04-06 13:53:36 +02:00
janEbert 0e9bc82626 Loss -> Loss Functions 2020-04-06 13:52:27 +02:00
Carlo Lucibello c54d71ce56 update travis 2020-04-06 13:20:28 +02:00
Carlo Lucibello d6cb9f055d fix housing download 2020-04-06 11:08:20 +02:00
Carlo Lucibello f9e9710446 update travis and bound julia version 2020-04-06 09:35:34 +02:00
Carlo Lucibello 18ea480388 fix tests and new version 2020-04-06 09:26:38 +02:00
janEbert 2a65a30399 Fix doctests in runtests.jl 2020-04-05 13:58:27 +02:00
janEbert 8d2d15aa70 Remove links to OneHot{Vector,Matrix}
Since they aren't documented, we only get a 404 link.
2020-04-04 23:06:56 +02:00
janEbert 73d631f5cd Fix and improve docs
Add missing docstrings, improve existing ones, fix links to functions
or files.
2020-04-04 23:00:34 +02:00
janEbert 2ce5f6d9bf Further docstring improvements in src/
Some had to be re-done after the rebase
2020-04-04 22:59:45 +02:00
janEbert 64ce32ddcf Fix problems due to rebase 2020-04-04 22:55:14 +02:00
janEbert e16c24a9b8 General minuscule improvements 2020-04-04 19:43:28 +02:00
janEbert a614983e0b Improve parameter lists in optimisers.jl 2020-04-04 18:40:20 +02:00
janEbert aaa0a82b74 Slight modifications in `recurrent` docstrings 2020-04-04 18:21:10 +02:00
janEbert 3b913cd501 Fix rebase changes
- Remove `Flux.testmode!` reference (the function no longer exists).
- Change TrackedArray to Array in doctest (Tracker -> Zygote).
2020-04-04 18:21:10 +02:00
janEbert ff9198b939 Add datasets to docs
All the relevant functions. Perhaps discuss a consistent API, describe
it in the docs and then only document the modules.
2020-04-04 18:19:20 +02:00
janEbert 740a59d0a6 Add missing docstrings to `src/data`. 2020-04-04 18:16:46 +02:00
janEbert ba80c2e8ab Improve whitespaces in docs 2020-04-04 18:16:46 +02:00
janEbert ab86e350f2 Improve docstrings
Improvements like...
   - fixing typos,
   - removing trailing and double whitespaces,
   - using `jldoctest` blocks where applicable,
   - fixing, updating or correctly setting up existing doctests,
   - improving consistency (for example, always use "# Examples" instead
     of other variants),
   - removing empty lines between docstrings and functions,
   - instead of mentioning keywords, put them into the docstring,
   - adding some missing but useful keywords,
   - adding references (`@ref`),
   - using LaTeX math where applicable, and
   - linking papers.

Debatable stuff that is untouched:
   - BE/AE s/z irregularities ("normalise" versus "normalize") since
     most papers use the AE version while the Flux source code was
     written with BE spelling.
   - Names of normalization functions are capitalized
     ("Batch Normalization" instead of "batch normalization").
2020-04-04 18:16:46 +02:00
janEbert c76b7315ac Add loss and utility functions to docs 2020-04-04 17:39:19 +02:00
janEbert c222e1b124 Add missing docstrings to `src/utils.jl`
Not sure about the `stack`, `unstack` and `unsqueeze` functions.
2020-04-04 17:38:25 +02:00
janEbert 2f955a33cd `src/layers/stateless.jl`: Add missing docstrings 2020-04-04 17:36:23 +02:00
janEbert 9b68423e64 Import (`using`) Flux for all doctests 2020-04-04 17:22:08 +02:00
janEbert 1bf8dc2d5b Update Documenter version and fix warnings
0.23.2 -> 0.23.3
2020-04-04 17:22:08 +02:00
bors[bot] 6b37ce3986
Merge #1098
1098: Allow CuArrays v2.x r=dhairyagandhi96 a=ararslan



Co-authored-by: Tim Besard <tim.besard@gmail.com>
Co-authored-by: Alex Arslan <ararslan@comcast.net>
Co-authored-by: Dhairya Gandhi <dhairya@juliacopmuting.com>
2020-03-26 09:43:21 +00:00
Dhairya Gandhi 6939e03fc6 bump CuArrays version 2020-03-26 14:03:55 +05:30
Dhairya Gandhi 119a66a7cd Merge remote-tracking branch 'origin/tb/cuarraystyle' into aa/cuarrays 2020-03-26 13:42:06 +05:30
Alex Arslan e85a5d8573
Update CUDAdrv for Tim's bug fix 2020-03-25 15:23:07 -07:00
Alex Arslan 49ba121159
Update Manifest.toml 2020-03-25 12:48:29 -07:00
Alex Arslan 347f53adf6
Allow CuArrays v2.x 2020-03-25 10:58:39 -07:00
bors[bot] 240ab1147f
Merge #1096
1096: fix doc typos r=dhairyagandhi96 a=wenjie-p



Co-authored-by: yuebanyishenqiu <thisispwj@outlook.com>
2020-03-22 06:26:11 +00:00
yuebanyishenqiu 1511778267 fix typos 2020-03-22 09:41:29 +08:00
bors[bot] 1605a01039
Merge #1083
1083: Fix typo in the docstrings of AlphaDropout r=CarloLucibello a=AzamatB



Co-authored-by: AzamatB <aberdysh@gmail.com>
2020-03-14 09:56:05 +00:00
AzamatB 85a9493722
Fix typo in the docstrings of AlphaDropout 2020-03-14 15:42:00 +06:00
bors[bot] 5e09113586
Merge #1080
1080: CompatHelper: bump compat for "Colors" to "0.12" r=dhairyagandhi96 a=github-actions[bot]

This pull request changes the compat entry for the `Colors` package from `0.8, 0.9, 0.10, 0.11` to `0.8, 0.9, 0.10, 0.11, 0.12`.

This keeps the compat entries for earlier versions.

Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request.

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2020-03-14 01:47:45 +00:00
github-actions[bot] bca74213ee CompatHelper: bump compat for "Colors" to "0.12" 2020-03-14 00:12:33 +00:00
bors[bot] 8930021b47
Merge #1078
1078: CompatHelper: bump compat for "CodecZlib" to "0.7" r=CarloLucibello a=github-actions[bot]

This pull request changes the compat entry for the `CodecZlib` package from `0.5, 0.6` to `0.5, 0.6, 0.7`.

This keeps the compat entries for earlier versions.

Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request.

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2020-03-13 11:49:02 +00:00
github-actions[bot] 69e96ed1c1 CompatHelper: bump compat for "CodecZlib" to "0.7" 2020-03-13 00:13:04 +00:00
bors[bot] a874bef6f9
Merge #1076
1076: fix typo in the Dropout docs r=dhairyagandhi96 a=AzamatB



Co-authored-by: AzamatB <aberdysh@gmail.com>
2020-03-10 09:40:28 +00:00
AzamatB f0d866b2fd
fix typo in the Dropout docs 2020-03-10 12:44:19 +06:00
bors[bot] d4cf1436df
Merge #950
950: added GlobalMaxPool, GlobalMeanPool, and flatten layers r=CarloLucibello a=gartangh



Co-authored-by: Garben Tanghe <garben.tanghe@gmail.com>
2020-03-08 14:27:10 +00:00
Garben Tanghe fc3af681ec updated documentation 2020-03-08 14:22:09 +01:00
Garben Tanghe 746e3310f1 removed Flatten struct
updated documentation
2020-03-08 14:22:03 +01:00
Garben Tanghe 82e16a5b29 split up Flatten layer to use the flatten function 2020-03-08 14:21:59 +01:00
Garben Tanghe 3e14bd878c added GlobalMaxPool, GlobalMeanPool, and Flatten layers 2020-03-08 14:18:48 +01:00
Dhairya Gandhi d8e44fcc1c correct broadcasting for addition 2020-03-04 18:22:45 +05:30
Dhairya Gandhi 7e308e77fd rm unneccesary fns 2020-03-04 17:57:16 +05:30
Dhairya Gandhi 5a4f1932a6 closes #1071 2020-03-04 17:22:45 +05:30
Dhairya Gandhi 20e78e274e docs fix 2020-02-26 22:41:45 +05:30
Dhairya Gandhi cf82393ae8 type signatures 2020-02-26 22:36:25 +05:30
Dhairya Gandhi cd931793ef more docs and constructors 2020-02-26 22:29:14 +05:30
Dhairya Gandhi 58211e31bd docs improve 2020-02-26 22:22:11 +05:30
Dhairya Gandhi f889d0c4d4 add kwarg constructors 2020-02-26 22:19:17 +05:30
Tim Besard 4ed7d984db Adapt to CuArrays ArrayStyle changes. 2020-02-25 14:09:03 +01:00
Dhairya Gandhi 26631e1361 test_broken AlphaDropout 2020-02-16 21:22:37 +05:30
Dhairya Gandhi bc20103ea6 no-op copy 2020-01-31 13:23:33 +05:30
Dhairya Gandhi b9fbee1ff0 ::typeof(op) -> op 2020-01-31 12:24:36 +05:30
Dhairya Gandhi 29ab410794 test gradients are allocated on the gpu 2020-01-17 15:52:26 +05:30
Dhairya Gandhi b1e68813a8 cpu -> test_throws 2019-12-20 23:02:44 +05:30
Dhairya Gandhi efa2cbfd0e checkin Manifest#master 2019-12-11 14:13:41 +05:30
Dhairya Gandhi a72ca2b05d fix args 2019-12-09 23:18:01 +05:30
Dhairya Gandhi 894c075b6d rm Zeros setindex 2019-12-09 21:40:58 +05:30
Dhairya Gandhi f39e184814 rm Zeros warning 2019-12-09 21:07:30 +05:30
Dhairya Gandhi 9b6155c77d
Merge branch 'master' into dg/gradtests 2019-12-05 18:17:47 +05:30
Dhairya Gandhi 76dc8ea9d4 formatting fixes 2019-12-05 18:14:04 +05:30
Dhairya Gandhi 717ad9328d add some grad tests on GPU 2019-12-05 18:12:23 +05:30
DrChainsaw 755536bf5e Merge remote-tracking branch 'upstream/master' into samepad 2019-12-04 23:45:03 +01:00
Dhairya Gandhi ec872bb579 test that bias has no grads with Zeros 2019-11-27 19:45:04 +05:30
Dhairya Gandhi 245563077b cleaner API 2019-11-27 19:40:58 +05:30
Dhairya Gandhi eb41715d26 define manual rules 2019-11-19 13:30:33 +05:30
Dhairya Gandhi e89b8eba77 fixes 2019-11-13 01:12:26 +05:30
DrChainsaw 453ecd1f24 Merge remote-tracking branch 'upstream/master' into samepad 2019-11-08 18:49:47 +01:00
Dhairya Gandhi a4a987f0b0 hook into bcasting 2019-11-07 16:53:41 +05:30
Dhairya Gandhi 7c90fb469d use array to define Zeros 2019-10-23 20:02:15 +05:30
Dhairya Gandhi 4a183aeaf0 make Zeros a dimensionlesss number 2019-10-22 16:11:27 +05:30
DrChainsaw 530d4edb67 Fix for reading comprehension error (dim is not always 2 * (N-2)) Fix for ambiguous method sig 2019-10-20 16:03:01 +02:00
DrChainsaw 411ce5dbd8 Add SamePad for pooling layers 2019-10-20 13:43:39 +02:00
DrChainsaw fc123d6279 Add SamePad for conv layers 2019-10-20 13:43:23 +02:00
Dhairya Gandhi c85bad4427 replace weight with filter 2019-10-08 20:26:09 +05:30
Dhairya Gandhi 49ea43e711 ZeroType => Zeros 2019-10-08 20:02:04 +05:30
Dhairya Gandhi 95c5845e99 document bias switch 2019-10-08 17:54:01 +05:30
Dhairya Gandhi b596faaffa tests bias switch 2019-10-08 17:18:39 +05:30
Dhairya Gandhi 040697fb2b add bias and weight kwarg 2019-10-08 17:18:19 +05:30
Dhairya Gandhi f3904b4e04 add ZeroType back 2019-10-08 17:17:36 +05:30
Dhairya Gandhi a1e826b888 fixes 2019-10-06 05:10:56 +05:30
Dhairya Gandhi 214f71f492 add N 2019-10-06 04:55:33 +05:30
Dhairya Gandhi 2ae3ad3b31 doc fixes 2019-10-06 04:46:13 +05:30
Dhairya Gandhi d00f833c17 rm ZeroType 2019-10-06 04:44:50 +05:30
Dhairya Gandhi e97d61f257 fixes 2019-10-06 04:42:26 +05:30
Dhairya Gandhi 48a305bd21 ditto remaining layers 2019-10-06 04:41:06 +05:30
Dhairya Gandhi 55ef7c1aba add weight and bias kwargs 2019-10-06 04:25:23 +05:30
Dhairya Gandhi 1fe321781b add to docs 2019-10-01 21:29:18 +05:30
Dhairya Gandhi dced8c04e5 use ZeroType 2019-10-01 21:25:07 +05:30
Dhairya Gandhi a801fcb9e7 docstrings 2019-09-27 12:07:55 +05:30
Dhairya Gandhi 9f2ac8fdef ditto remaining conv layers 2019-09-27 12:04:27 +05:30
Dhairya Gandhi 5ea6a33f44 make bias optional 2019-09-27 11:48:12 +05:30
47 changed files with 1785 additions and 765 deletions

12
.github/pull_request_template.md vendored Normal file
View File

@ -0,0 +1,12 @@
[Please delete this text and describe your change here.
For bugfixes, please detail the bug and include a test case which your patch fixes.
If you are adding a new feature, please clearly describe the design, its rationale, the possible alternatives considered.
It is easiest to merge new features when there is clear precedent in other systems; we need to know we're taking
the right direction since it can be hard to change later.]
### PR Checklist
- [ ] Tests are added
- [ ] Entry in NEWS.md
- [ ] Documentation, if applicable
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).

View File

@ -6,16 +6,8 @@ on:
jobs:
CompatHelper:
runs-on: ${{ matrix.os }}
strategy:
matrix:
julia-version: [1.3]
julia-arch: [x64]
os: [ubuntu-latest]
runs-on: ubuntu-latest
steps:
- uses: julia-actions/setup-julia@latest
with:
version: ${{ matrix.julia-version }}
- name: Pkg.add("CompatHelper")
run: julia -e 'using Pkg; Pkg.add("CompatHelper")'
- name: CompatHelper.main()

View File

@ -7,6 +7,7 @@ os:
julia:
- 1.3
- 1
- nightly
notifications:

View File

@ -8,71 +8,77 @@ version = "0.5.0"
[[AbstractTrees]]
deps = ["Markdown"]
git-tree-sha1 = "86d092c2599f1f7bb01668bf8eb3412f98d61e47"
git-tree-sha1 = "33e450545eaf7699da1a6e755f9ea65f14077a45"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.2"
version = "0.3.3"
[[Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "c88cfc7f9c1f9f8633cddf0b56e86302b70f64c5"
git-tree-sha1 = "fd04049c7dd78cfef0b06cdc1f0f181467655712"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "1.0.1"
version = "1.1.0"
[[ArrayLayouts]]
deps = ["FillArrays", "LinearAlgebra"]
git-tree-sha1 = "bc779df8d73be70e4e05a63727d3a4dfb4c52b1f"
git-tree-sha1 = "a504dca2ac7eda8761c8f7c1ed52427a1be75a3c"
uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
version = "0.1.5"
version = "0.2.6"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BinaryProvider]]
deps = ["Libdl", "SHA"]
git-tree-sha1 = "5b08ed6036d9d3f0ee6369410b830f8873d4024c"
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.8"
version = "0.5.10"
[[CEnum]]
git-tree-sha1 = "62847acab40e6855a9b5905ccb99c2b5cf6b3ebb"
git-tree-sha1 = "1b77a77c3b28e0b3f413f7567c9bb8dd9bdccd14"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.2.0"
version = "0.3.0"
[[CUDAapi]]
deps = ["Libdl", "Logging"]
git-tree-sha1 = "d7ceadd8f821177d05b897c0517e94633db535fe"
git-tree-sha1 = "831b825d10104bd29e28f6da93312a976830717b"
uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
version = "3.1.0"
version = "4.0.0"
[[CUDAdrv]]
deps = ["CEnum", "CUDAapi", "Printf"]
git-tree-sha1 = "01e90fa34e25776bc7c8661183d4519149ebfe59"
git-tree-sha1 = "f56bbf18c86bcff7a961a32a4947a5abb2963a29"
uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
version = "6.0.0"
version = "6.3.0"
[[CUDAnative]]
deps = ["Adapt", "CEnum", "CUDAapi", "CUDAdrv", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "Printf", "TimerOutputs"]
git-tree-sha1 = "f86269ff60ebe082a2806ecbce51f3cadc68afe9"
deps = ["Adapt", "BinaryProvider", "CEnum", "CUDAapi", "CUDAdrv", "ExprTools", "GPUCompiler", "LLVM", "Libdl", "Pkg", "Printf"]
git-tree-sha1 = "ac86db2b05fdfec96b011e25a504ffe7476e8a68"
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
version = "2.10.2"
version = "3.1.0"
[[CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "cab4da992adc0a64f63fa30d2db2fd8bec40cab4"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "0.5.11"
[[CodecZlib]]
deps = ["BinaryProvider", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "05916673a2627dd91b4969ff8ba6941bc85a960e"
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.6.0"
version = "0.7.0"
[[ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b9de8dc6106e09c79f3f776c27c62360d30e5eb8"
git-tree-sha1 = "c73d9cfc2a9d8433dc77f5bff4bddf46b1d78c20"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.9.1"
version = "0.10.3"
[[Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Printf", "Reexport"]
git-tree-sha1 = "177d8b959d3c103a6d57574c38ee79c81059c31b"
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Reexport"]
git-tree-sha1 = "1e9bba7984e78aa8cdeea7f9f7cc984ad4e4b1c7"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.11.2"
version = "0.12.2"
[[CommonSubexpressions]]
deps = ["Test"]
@ -82,26 +88,32 @@ version = "0.2.0"
[[CompilerSupportLibraries_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "b57c5d019367c90f234a7bc7e24ff0a84971da5d"
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.2.0+1"
version = "0.3.3+0"
[[Cthulhu]]
deps = ["CodeTracking", "InteractiveUtils", "REPL", "UUIDs", "Unicode"]
git-tree-sha1 = "f3643e78353199d3097821e806348bd83f364155"
uuid = "f68482b8-f384-11e8-15f7-abe071a5a75f"
version = "1.1.1"
[[CuArrays]]
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Printf", "Random", "Requires", "SparseArrays", "TimerOutputs"]
git-tree-sha1 = "7c20c5a45bb245cf248f454d26966ea70255b271"
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SparseArrays", "Statistics", "TimerOutputs"]
git-tree-sha1 = "1582b74d2322df7dd94549d4ac9d095e0f20e884"
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
version = "1.7.2"
version = "2.2.1"
[[DataAPI]]
git-tree-sha1 = "674b67f344687a88310213ddfa8a2b3c76cc4252"
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.1.0"
version = "1.3.0"
[[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "5a431d46abf2ef2a4d5d00bd0ae61f651cf854c8"
git-tree-sha1 = "af6d9c86e191c917c2276fbede1137e8ea20157f"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.17.10"
version = "0.17.17"
[[Dates]]
deps = ["Printf"]
@ -127,52 +139,55 @@ version = "1.0.1"
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[FFTW]]
deps = ["AbstractFFTs", "FFTW_jll", "IntelOpenMP_jll", "Libdl", "LinearAlgebra", "MKL_jll", "Reexport"]
git-tree-sha1 = "109d82fa4b00429f9afcce873e9f746f11f018d3"
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
version = "1.2.0"
[[FFTW_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "ddb57f4cf125243b4aa4908c94d73a805f3cbf2c"
uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a"
version = "3.3.9+4"
[[ExprTools]]
git-tree-sha1 = "6f0517056812fd6aa3af23d4b70d5325a2ae4e95"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.1"
[[FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays"]
git-tree-sha1 = "85c6b57e2680fa28d5c8adc798967377646fbf66"
git-tree-sha1 = "44f561e293987ffc84272cd3d2b14b0b93123d63"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.8.5"
version = "0.8.10"
[[FixedPointNumbers]]
git-tree-sha1 = "4aaea64dd0c30ad79037084f8ca2b94348e65eaa"
git-tree-sha1 = "3ba9ea634d4c8b289d590403b4a06f8e227a6238"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.7.1"
version = "0.8.0"
[[ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "88b082d492be6b63f967b6c96b352e25ced1a34c"
git-tree-sha1 = "869540e4367122fbffaace383a5bdc34d6e5e5ac"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.9"
version = "0.10.10"
[[Functors]]
deps = ["MacroTools"]
git-tree-sha1 = "f40adc6422f548176bb4351ebd29e4abf773040a"
uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
version = "0.1.0"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[GPUArrays]]
deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"]
git-tree-sha1 = "e756da6cee76a5f1436a05827fa8fdf3badc577f"
git-tree-sha1 = "d887693eb1bd5e1fd573262a978745481895ec7d"
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
version = "2.0.1"
version = "3.4.1"
[[GPUCompiler]]
deps = ["Cthulhu", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "TimerOutputs"]
git-tree-sha1 = "5275aa268ecd09640b32560e1eae90c78816e4d1"
uuid = "61eb1bfa-7361-4325-ad38-22787b887f55"
version = "0.2.0"
[[IRTools]]
deps = ["InteractiveUtils", "MacroTools", "Test"]
git-tree-sha1 = "1a4355e4b5b50be2311ebb644f34f3306dbd0410"
git-tree-sha1 = "90ee39f9beaaa186e4968417ea2b8ed5673c91c0"
uuid = "7869d1d1-7146-5819-86e3-90919afe41df"
version = "0.3.1"
[[IntelOpenMP_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "fb8e1c7a5594ba56f9011310790e03b5384998d6"
uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0"
version = "2018.0.3+0"
version = "0.3.3"
[[InteractiveUtils]]
deps = ["Markdown"]
@ -180,17 +195,18 @@ uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[Juno]]
deps = ["Base64", "Logging", "Media", "Profile"]
git-tree-sha1 = "4f2249fb58cfb140eeb89428e31791e2f8959d8c"
git-tree-sha1 = "a686b0cf235fa3e491b79b4783c2d2382292b436"
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
version = "0.8.0"
version = "0.8.2"
[[LLVM]]
deps = ["CEnum", "Libdl", "Printf", "Unicode"]
git-tree-sha1 = "1d08d7e4250f452f6cb20e4574daaebfdbee0ff7"
git-tree-sha1 = "dd3f584c3dbefe39b2a8fbafa1a3b77e31e21255"
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
version = "1.3.3"
version = "1.5.1"
[[LibGit2]]
deps = ["Printf"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[Libdl]]
@ -203,17 +219,11 @@ uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MKL_jll]]
deps = ["IntelOpenMP_jll", "Libdl", "Pkg"]
git-tree-sha1 = "720629cc8cbd12c146ca01b661fd1a6cf66e2ff4"
uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7"
version = "2019.0.117+2"
[[MacroTools]]
deps = ["DataStructures", "Markdown", "Random"]
git-tree-sha1 = "07ee65e03e28ca88bc9a338a3726ae0c3efaa94b"
deps = ["Markdown", "Random"]
git-tree-sha1 = "f7d2e3f654af75f01ec49be82c231c382214223a"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.4"
version = "0.5.5"
[[Markdown]]
deps = ["Base64"]
@ -247,18 +257,17 @@ version = "0.3.3"
[[OpenSpecFun_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "d110040968b9afe95c6bd9c6233570b0fe8abd22"
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.3+2"
version = "0.5.3+3"
[[OrderedCollections]]
deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"
git-tree-sha1 = "12ce190210d278e12644bcadf5b21cbdcf225cd3"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.1.0"
version = "1.2.0"
[[Pkg]]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Test", "UUIDs"]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[Printf]]
@ -310,15 +319,15 @@ uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]]
deps = ["OpenSpecFun_jll"]
git-tree-sha1 = "e19b98acb182567bcb7b75bb5d9eedf3a3b5ec6c"
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.10.0"
version = "0.10.3"
[[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "5a3bcb6233adabde68ebc97be66e95dcb787424c"
git-tree-sha1 = "5c06c0aeb81bef54aed4b3f446847905eb6cbda0"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.12.1"
version = "0.12.3"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
@ -326,9 +335,9 @@ uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics"]
git-tree-sha1 = "be5c7d45daa449d12868f4466dbf5882242cf2d9"
git-tree-sha1 = "a6102b1f364befdb05746f386b67c6b7e3262c45"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.32.1"
version = "0.33.0"
[[Test]]
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
@ -336,9 +345,9 @@ uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[TimerOutputs]]
deps = ["Printf"]
git-tree-sha1 = "311765af81bbb48d7bad01fb016d9c328c6ede03"
git-tree-sha1 = "f458ca23ff80e46a630922c555d838303e4b9603"
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
version = "0.5.3"
version = "0.5.6"
[[TranscodingStreams]]
deps = ["Random", "Test"]
@ -355,21 +364,21 @@ uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[ZipFile]]
deps = ["Libdl", "Printf", "Zlib_jll"]
git-tree-sha1 = "8748302cfdec02c4ae9c97b112cf10003f7f767f"
git-tree-sha1 = "254975fef2fc526583bb9b7c9420fe66ffe09f2f"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.9.1"
version = "0.9.2"
[[Zlib_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "fd36a6739e256527287c5444960d0266712cd49e"
git-tree-sha1 = "a2e0d558f6031002e380a90613b199e37a8565bf"
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.11+8"
version = "1.2.11+10"
[[Zygote]]
deps = ["ArrayLayouts", "DiffRules", "FFTW", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
git-tree-sha1 = "7dc5fdb4917ac5a84e199ae654316a01cd4a278b"
deps = ["AbstractFFTs", "ArrayLayouts", "DiffRules", "FillArrays", "ForwardDiff", "Future", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
git-tree-sha1 = "707ceea58e2bd0ff3077ab13a92f8355181d3ee4"
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
version = "0.4.9"
version = "0.4.20"
[[ZygoteRules]]
deps = ["MacroTools"]

16
NEWS.md
View File

@ -1,3 +1,19 @@
# v0.11
* Change to `DataLoader`'s constructor [https://github.com/FluxML/Flux.jl/pull/1152]
* Use `DataLoader` with `NamedTuple`s, so that tensors can be accessed by name [https://github.com/FluxML/Flux.jl/pull/1221].
* Error if Dense layers weights and biases are not arrays [https://github.com/FluxML/Flux.jl/pull/1218].
# v0.10.5
* Add option for [same padding](https://github.com/FluxML/Flux.jl/pull/901) to conv and pooling layers by setting `pad=SamePad()`.
* Added option to set `bias` to [Flux.Zeros](https://github.com/FluxML/Flux.jl/pull/873) to eliminating `bias` from being trained.
* Added `GlobalMaxPool` and `GlobalMeanPool` [layers](https://github.com/FluxML/Flux.jl/pull/950) for performing global pooling operations.
* Added `ClipValue` and `ClipNorm` in this [pr](https://github.com/FluxML/Flux.jl/pull/1133) to `Flux.Optimise` to provide a cleaner API for gradient clipping.
* Added new kwarg-only [constructors](https://github.com/FluxML/Flux.jl/pull/873) for the various convolutional layers.
* Documented the convolutional layer constructors accepting `weight` and `bias` keyword arguments to supply custom arrays for those fields.
* Testing suite improvements now test for gradients of all layers along with GPU support.
* Functors have now moved to [Functors.jl](https://github.com/FluxML/Flux.jl/pull/1174) to allow for their use outside of Flux.
* Added [helper functions](https://github.com/FluxML/Flux.jl/pull/873) `Flux.convfilter` and `Flux.depthwiseconvfilter` to construct weight arrays for convolutions outside of layer constructors so as to not have to depend on the default layers for custom implementations.
# v0.10.0
* The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669)
- The dependency on Tracker.jl has been removed.

View File

@ -1,6 +1,6 @@
name = "Flux"
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
version = "0.10.3"
version = "0.11.0-DEV"
[deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
@ -9,7 +9,9 @@ CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
@ -25,18 +27,19 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[compat]
AbstractTrees = "0.2, 0.3"
Adapt = "1"
CodecZlib = "0.5, 0.6"
Colors = "0.8, 0.9, 0.10, 0.11"
CuArrays = "1.6"
Adapt = "1, 2.0"
CodecZlib = "0.5, 0.6, 0.7"
Colors = "0.8, 0.9, 0.10, 0.11, 0.12"
CuArrays = "2"
Functors = "0.1"
Juno = "0.5, 0.6, 0.7, 0.8"
MacroTools = "0.3, 0.4, 0.5"
NNlib = "0.6"
Reexport = "0.2"
StatsBase = "0"
ZipFile = "0.7, 0.8, 0.9"
Zygote = "0.4"
julia = "1"
Zygote = "0.4.13"
julia = "1.3"
[extras]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"

View File

@ -1,6 +1,8 @@
using Documenter, Flux, NNlib
DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true)
makedocs(modules=[Flux, NNlib],
doctest = VERSION >= v"1.4",
sitename = "Flux",
pages = ["Home" => "index.md",
"Building Models" =>
@ -19,12 +21,16 @@ makedocs(modules=[Flux, NNlib],
"GPU Support" => "gpu.md",
"Saving & Loading" => "saving.md",
"The Julia Ecosystem" => "ecosystem.md",
"Utility Functions" => "utilities.md",
"Performance Tips" => "performance.md",
"Datasets" => "datasets.md",
"Community" => "community.md"],
format = Documenter.HTML(assets = ["assets/flux.css"],
analytics = "UA-36890222-9",
prettyurls = haskey(ENV, "CI")))
format = Documenter.HTML(
analytics = "UA-36890222-9",
assets = ["assets/flux.css"],
prettyurls = get(ENV, "CI", nothing) == "true"),
)
deploydocs(repo = "github.com/FluxML/Flux.jl.git",
deploydocs(repo = "github.com/FluxML/Flux.jl.git",
target = "build",
push_preview = true)

View File

@ -3,4 +3,4 @@ Flux provides the `DataLoader` type in the `Flux.Data` module to handle iteratio
```@docs
Flux.Data.DataLoader
```
```

View File

@ -7,15 +7,15 @@ julia> using Flux: onehot, onecold
julia> onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector:
false
true
false
0
1
0
julia> onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector:
false
false
true
0
0
1
```
The inverse is `onecold` (which can take a general probability distribution, as well as just booleans).
@ -31,6 +31,11 @@ julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
:c
```
```@docs
Flux.onehot
Flux.onecold
```
## Batches
`onehotbatch` creates a batch (matrix) of one-hot vectors, and `onecold` treats matrices as batches.
@ -52,3 +57,7 @@ julia> onecold(ans, [:a, :b, :c])
```
Note that these operations returned `OneHotVector` and `OneHotMatrix` rather than `Array`s. `OneHotVector`s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.
```@docs
Flux.onehotbatch
```

20
docs/src/datasets.md Normal file
View File

@ -0,0 +1,20 @@
# Datasets
Flux includes several standard machine learning datasets.
```@docs
Flux.Data.Iris.features()
Flux.Data.Iris.labels()
Flux.Data.MNIST.images()
Flux.Data.MNIST.labels()
Flux.Data.FashionMNIST.images()
Flux.Data.FashionMNIST.labels()
Flux.Data.CMUDict.phones()
Flux.Data.CMUDict.symbols()
Flux.Data.CMUDict.rawdict()
Flux.Data.CMUDict.cmudict()
Flux.Data.Sentiment.train()
Flux.Data.Sentiment.test()
Flux.Data.Sentiment.dev()
```

View File

@ -19,7 +19,7 @@ Affine{Array{Float64,2},Array{Float64,1}}([0.66722 0.774872 0.249809; 0.843321 0
julia> Flux.params(a) # default behavior
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955]])
julia> Flux.trainable(a::Affine) = (a.W, a.b,)
julia> Flux.trainable(a::Affine) = (a.W,)
julia> Flux.params(a)
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297]])

View File

@ -32,8 +32,6 @@ julia> gradient(f, [2, 1], [2, 0])
But machine learning models can have *hundreds* of parameters! To handle this, Flux lets you work with collections of parameters, via `params`. You can get the gradient of all parameters used in a program without explicitly passing them in.
```jldoctest basics
julia> using Flux
julia> x = [2, 1];
julia> y = [2, 0];
@ -220,7 +218,7 @@ Flux.@functor Affine
This enables a useful extra set of functionality for our `Affine` layer, such as [collecting its parameters](../training/optimisers.md) or [moving it to the GPU](../gpu.md).
For some more helpful tricks, including parameter freezing, please checkout the [advanced usage guide](advacned.md).
For some more helpful tricks, including parameter freezing, please checkout the [advanced usage guide](advanced.md).
## Utility functions
@ -240,5 +238,5 @@ Currently limited to the following layers:
- `MeanPool`
```@docs
outdims
Flux.outdims
```

View File

@ -14,10 +14,17 @@ These layers are used to build convolutional neural networks (CNNs).
```@docs
Conv
MaxPool
GlobalMaxPool
MeanPool
GlobalMeanPool
DepthwiseConv
ConvTranspose
CrossCor
SamePad
flatten
Flux.Zeros
Flux.convfilter
Flux.depthwiseconvfilter
```
## Recurrent Layers
@ -29,6 +36,7 @@ RNN
LSTM
GRU
Flux.Recur
Flux.reset!
```
## Other General Purpose Layers
@ -46,20 +54,22 @@ SkipConnection
These layers don't affect the structure of the network but may improve training times or reduce overfitting.
```@docs
Flux.normalise
BatchNorm
Dropout
Flux.dropout
Dropout
AlphaDropout
LayerNorm
InstanceNorm
GroupNorm
```
### Testmode
Many normalisation layers behave differently under training and inference (testing). By default, Flux will automatically determine when a layer evaluation is part of training or inference. Still, depending on your use case, it may be helpful to manually specify when these layers should be treated as being trained or not. For this, Flux provides `testmode!`. When called on a model (e.g. a layer or chain of layers), this function will place the model into the mode specified.
Many normalisation layers behave differently under training and inference (testing). By default, Flux will automatically determine when a layer evaluation is part of training or inference. Still, depending on your use case, it may be helpful to manually specify when these layers should be treated as being trained or not. For this, Flux provides `Flux.testmode!`. When called on a model (e.g. a layer or chain of layers), this function will place the model into the mode specified.
```@docs
testmode!
Flux.testmode!
trainmode!
```

View File

@ -64,3 +64,7 @@ julia> activations(c, rand(10))
julia> sum(norm, ans)
2.1166067f0
```
```@docs
Flux.activations
```

View File

@ -39,7 +39,7 @@ E.g. the following will have run into the same problem as above:
leaky_tanh(x) = 0.01*x + tanh(x)
```
While one could change the activation function (e.g. to use `0.01f0x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
While one could change the activation function (e.g. to use `0.01f0*x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
```
leaky_tanh(x) = oftype(x/1, 0.01)*x + tanh(x)
```
@ -52,7 +52,7 @@ e.g.
```julia
function loss_total(xs::AbstractVector{<:Vector}, ys::AbstractVector{<:Vector})
sum(zip(xs, ys)) do (x, y_target)
y_pred = model(x) # evaluate the model
y_pred = model(x) # evaluate the model
return loss(y_pred, y_target)
end
end

View File

@ -52,6 +52,7 @@ Momentum
Nesterov
RMSProp
ADAM
RADAM
AdaMax
ADAGrad
ADADelta
@ -79,7 +80,7 @@ Momentum(eta::Real, rho::Real) = Momentum(eta, rho, IdDict())
The `Momentum` type will act as our optimiser in this case. Notice that we have added all the parameters as fields, along with the velocity which we will use as our state dictionary. Each parameter in our models will get an entry in there. We can now define the rule applied when this optimiser is invoked.
```julia
function apply!(o::Momentum, x, Δ)
function Flux.Optimise.apply!(o::Momentum, x, Δ)
η, ρ = o.eta, o.rho
v = get!(o.velocity, x, zero(x))::typeof(x)
@. v = ρ * v - η * Δ
@ -139,3 +140,16 @@ ExpDecay
InvDecay
WeightDecay
```
## Gradient Clipping
Gradient clipping is useful for training recurrent neural networks, which have a tendency to suffer from the exploding gradient problem. An example usage is
```julia
opt = Optimiser(ClipValue(1e-3), ADAM(1e-3))
```
```@docs
ClipValue
ClipNorm
```

View File

@ -32,6 +32,7 @@ Flux.train!(loss, ps, data, opt)
```
The objective will almost always be defined in terms of some *cost function* that measures the distance of the prediction `m(x)` from the target `y`. Flux has several of these built in, like `mse` for mean squared error or `crossentropy` for cross entropy loss, but you can calculate it however you want.
For a list of all built-in loss functions, check out the [layer reference](../models/layers.md).
At first glance it may seem strange that the model that we want to train is not part of the input arguments of `Flux.train!` too. However the target of the optimizer is not the model itself, but the objective function that represents the departure between modelled and observed data. In other words, the model is implicitly defined in the objective function, and there is no need to give it explicitly. Passing the objective function instead of the model and a cost function separately provides more flexibility, and the possibility of optimizing the calculations.
@ -94,6 +95,10 @@ julia> @epochs 2 Flux.train!(...)
# Train for two epochs
```
```@docs
Flux.@epochs
```
## Callbacks
`train!` takes an additional argument, `cb`, that's used for callbacks so that you can observe the training process. For example:
@ -137,7 +142,7 @@ function my_custom_train!(loss, ps, data, opt)
for d in data
gs = gradient(ps) do
training_loss = loss(d...)
# Insert what ever code you want here that needs Training loss, e.g. logging
# Insert whatever code you want here that needs Training loss, e.g. logging
return training_loss
end
# insert what ever code you want here that needs gradient

49
docs/src/utilities.md Normal file
View File

@ -0,0 +1,49 @@
# Utility Functions
Flux contains some utility functions for working with data; these functions
help create inputs for your models or batch your dataset.
Other functions can be used to initialize your layers or to regularly execute
callback functions.
## Working with Data
```@docs
Flux.unsqueeze
Flux.stack
Flux.unstack
Flux.chunk
Flux.frequencies
Flux.batch
Flux.batchseq
Base.rpad(v::AbstractVector, n::Integer, p)
```
## Layer Initialization
These are primarily useful if you are planning to write your own layers.
Flux initializes convolutional layers and recurrent cells with `glorot_uniform`
by default.
To change the default on an applicable layer, pass the desired function with the
`init` keyword. For example:
```jldoctest; setup = :(using Flux)
julia> conv = Conv((3, 3), 1 => 8, relu; init=Flux.glorot_normal)
Conv((3, 3), 1=>8, relu)
```
```@docs
Flux.glorot_uniform
Flux.glorot_normal
```
## Model Abstraction
```@docs
Flux.destructure
```
## Callback Helpers
```@docs
Flux.throttle
Flux.stop
```

View File

@ -3,29 +3,33 @@ module Flux
# Zero Flux Given
using Base: tail
using Zygote, MacroTools, Juno, Reexport, Statistics, Random
using Statistics, Random, LinearAlgebra
using Zygote, MacroTools, Juno, Reexport
using MacroTools: @forward
@reexport using NNlib
using Zygote: Params, @adjoint, gradient, pullback, @nograd
export gradient
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool,
export Chain, Dense, Maxout, RNN, LSTM, GRU, SamePad, Conv, CrossCor, ConvTranspose,
GlobalMaxPool, GlobalMeanPool, MaxPool, MeanPool, flatten,
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm,
SkipConnection, params, fmap, cpu, gpu, f32, f64, testmode!, trainmode!
include("optimise/Optimise.jl")
using .Optimise
using .Optimise: @epochs
export SGD, Descent, ADAM, Momentum, Nesterov, RMSProp,
export Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay,
ClipValue, ClipNorm
using CuArrays
const use_cuda = Ref(false)
include("utils.jl")
include("zeros.jl")
include("onehot.jl")
include("functor.jl")

View File

@ -51,4 +51,6 @@ export Iris
include("housing.jl")
export Housing
@deprecate DataLoader(x...; kws...) DataLoader(x; kws...)
end

View File

@ -24,18 +24,35 @@ function load()
end
end
"""
phones()
Return a `Vector` containing the phones used in the CMU Pronouncing Dictionary.
"""
function phones()
load()
Symbol.(first.(split.(split(read(deps("cmudict", "cmudict.phones"),String),
"\n", keepempty = false), "\t")))
end
"""
symbols()
Return a `Vector` containing the symbols used in the CMU Pronouncing Dictionary.
A symbol is a phone with optional auxiliary symbols, indicating for example the
amount of stress on the phone.
"""
function symbols()
load()
Symbol.(split(read(deps("cmudict", "cmudict.symbols"),String),
"\n", keepempty = false))
end
"""
rawdict()
Return the unfiltered CMU Pronouncing Dictionary.
"""
function rawdict()
load()
Dict(String(xs[1]) => Symbol.(xs[2:end]) for xs in
@ -44,6 +61,14 @@ end
validword(s) = isascii(s) && occursin(r"^[\w\-\.]+$", s)
"""
cmudict()
Return a filtered CMU Pronouncing Dictionary.
It is filtered so each word contains only ASCII characters and a combination of
word characters (as determined by the regex engine using `\\w`), '-' and '.'.
"""
cmudict() = filter(p -> validword(p.first), rawdict())
alphabet() = ['A':'Z'..., '0':'9'..., '_', '-', '.']

View File

@ -1,7 +1,7 @@
# Adapted from Knet's src/data.jl (author: Deniz Yuret)
struct DataLoader
data
struct DataLoader{D}
data::D
batchsize::Int
nobs::Int
partial::Bool
@ -11,37 +11,43 @@ struct DataLoader
end
"""
DataLoader(data...; batchsize=1, shuffle=false, partial=true)
DataLoader(data; batchsize=1, shuffle=false, partial=true)
An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations
(except possibly the last one).
Takes as input one or more data tensors, e.g. X in unsupervised learning, X and Y in
supervised learning. The last dimension in each tensor is considered to be the observation
dimension.
Takes as input a single data tensor, or a tuple (or a named tuple) of tensors.
The last dimension in each tensor is considered to be the observation dimension.
If `shuffle=true`, shuffles the observations each time iterations are re-started.
If `partial=false`, drops the last mini-batch if it is smaller than the batchsize.
The original data is preserved as a tuple in the `data` field of the DataLoader.
The original data is preserved in the `data` field of the DataLoader.
Example usage:
Usage example:
Xtrain = rand(10, 100)
train_loader = DataLoader(Xtrain, batchsize=2)
# iterate over 50 mini-batches of size 2
for x in train_loader:
for x in train_loader
@assert size(x) == (10, 2)
...
end
train_loader.data # original dataset
# similar, but yielding tuples
train_loader = DataLoader((Xtrain,), batchsize=2)
for (x,) in train_loader
@assert size(x) == (10, 2)
...
end
Xtrain = rand(10, 100)
Ytrain = rand(100)
train_loader = DataLoader(Xtrain, Ytrain, batchsize=2, shuffle=true)
train_loader = DataLoader((Xtrain, Ytrain), batchsize=2, shuffle=true)
for epoch in 1:100
for (x, y) in train_loader:
for (x, y) in train_loader
@assert size(x) == (10, 2)
@assert size(y) == (2,)
...
@ -51,26 +57,26 @@ Example usage:
# train for 10 epochs
using IterTools: ncycle
Flux.train!(loss, ps, ncycle(train_loader, 10), opt)
# can use NamedTuple to name tensors
train_loader = DataLoader((images=Xtrain, labels=Ytrain), batchsize=2, shuffle=true)
for datum in train_loader
@assert size(datum.images) == (10, 2)
@assert size(datum.labels) == (2,)
end
"""
function DataLoader(data...; batchsize=1, shuffle=false, partial=true)
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
function DataLoader(data; batchsize=1, shuffle=false, partial=true)
batchsize > 0 || throw(ArgumentError("Need positive batchsize"))
nx = size(data[1])[end]
for i=2:length(data)
nx != size(data[i])[end] && throw(DimensionMismatch("All data should contain same number of observations"))
n = _nobs(data)
if n < batchsize
@warn "Number of observations less than batchsize, decreasing the batchsize to $n"
batchsize = n
end
if nx < batchsize
@warn "Number of data points less than batchsize, decreasing the batchsize to $nx"
batchsize = nx
end
imax = partial ? nx : nx - batchsize + 1
ids = 1:min(nx, batchsize)
DataLoader(data, batchsize, nx, partial, imax, [1:nx;], shuffle)
imax = partial ? n : n - batchsize + 1
DataLoader(data, batchsize, n, partial, imax, [1:n;], shuffle)
end
getdata(x::AbstractArray, ids) = x[(Base.Colon() for _=1:ndims(x)-1)..., ids]
@propagate_inbounds function Base.iterate(d::DataLoader, i=0) # returns data in d.indices[i+1:i+batchsize]
i >= d.imax && return nothing
if d.shuffle && i == 0
@ -78,15 +84,27 @@ getdata(x::AbstractArray, ids) = x[(Base.Colon() for _=1:ndims(x)-1)..., ids]
end
nexti = min(i + d.batchsize, d.nobs)
ids = d.indices[i+1:nexti]
if length(d.data) == 1
batch = getdata(d.data[1], ids)
else
batch = ((getdata(x, ids) for x in d.data)...,)
end
batch = _getobs(d.data, ids)
return (batch, nexti)
end
function Base.length(d::DataLoader)
n = d.nobs / d.batchsize
d.partial ? ceil(Int,n) : floor(Int,n)
end
end
_nobs(data::AbstractArray) = size(data)[end]
function _nobs(data::Union{Tuple, NamedTuple})
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
n = _nobs(data[1])
if !all(x -> _nobs(x) == n, Base.tail(data))
throw(DimensionMismatch("All data should contain same number of observations"))
end
return n
end
_getobs(data::AbstractArray, i) = data[ntuple(i -> Colon(), Val(ndims(data) - 1))..., i]
_getobs(data::Union{Tuple, NamedTuple}, i) = map(Base.Fix2(_getobs, i), data)
Base.eltype(::DataLoader{D}) where D = D

View File

@ -33,9 +33,10 @@ const TESTLABELS = joinpath(dir, "t10k-labels-idx1-ubyte")
Load the Fashion-MNIST images.
Each image is a 28×28 array of `Gray` colour values (see Colors.jl).
Each image is a 28×28 array of `Gray` colour values
(see [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)).
Returns the 60,000 training images by default; pass `:test` to retreive the
Return the 60,000 training images by default; pass `:test` to retrieve the
10,000 test images.
"""
function images(set = :train)
@ -49,10 +50,10 @@ end
labels()
labels(:test)
Load the labels corresponding to each of the images returned from `images()`.
Load the labels corresponding to each of the images returned from [`images()`](@ref).
Each label is a number from 0-9.
Returns the 60,000 training labels by default; pass `:test` to retreive the
Return the 60,000 training labels by default; pass `:test` to retrieve the
10,000 test labels.
"""
function labels(set = :train)

View File

@ -50,7 +50,7 @@ function load()
isfile(deps("housing.data")) && return
@info "Downloading the Boston housing Dataset"
download_and_verify("$(cache_prefix)https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
download_and_verify("$(cache_prefix)http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
deps("housing.data"),
"baadf72995725d76efe787b664e1f083388c79ba21ef9a7990d87f774184735a")

View File

@ -2,13 +2,12 @@
Fisher's classic iris dataset.
Measurements from 3 different species of iris: setosa, versicolor and
virginica. There are 50 examples of each species.
virginica. There are 50 examples of each species.
There are 4 measurements for each example: sepal length, sepal width, petal
length and petal width. The measurements are in centimeters.
There are 4 measurements for each example: sepal length, sepal width,
petal length and petal width. The measurements are in centimeters.
The module retrieves the data from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
"""
module Iris
@ -33,9 +32,7 @@ end
Get the labels of the iris dataset, a 150 element array of strings listing the
species of each example.
```jldoctest
julia> using Flux
```jldoctest; setup = :(Flux.Data.Iris.load())
julia> labels = Flux.Data.Iris.labels();
julia> summary(labels)
@ -54,13 +51,11 @@ end
"""
features()
Get the features of the iris dataset. This is a 4x150 matrix of Float64
elements. It has a row for each feature (sepal length, sepal width,
Get the features of the iris dataset. This is a 4x150 matrix of Float64
elements. It has a row for each feature (sepal length, sepal width,
petal length, petal width) and a column for each example.
```jldoctest
julia> using Flux
```jldoctest; setup = :(Flux.Data.Iris.load())
julia> features = Flux.Data.Iris.features();
julia> summary(features)

View File

@ -83,9 +83,10 @@ getfeatures(io::IO, index::Integer) = vec(getimage(io, index))
Load the MNIST images.
Each image is a 28×28 array of `Gray` colour values (see Colors.jl).
Each image is a 28×28 array of `Gray` colour values
(see [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)).
Returns the 60,000 training images by default; pass `:test` to retreive the
Return the 60,000 training images by default; pass `:test` to retrieve the
10,000 test images.
"""
function images(set = :train)
@ -99,10 +100,10 @@ end
labels()
labels(:test)
Load the labels corresponding to each of the images returned from `images()`.
Load the labels corresponding to each of the images returned from [`images()`](@ref).
Each label is a number from 0-9.
Returns the 60,000 training labels by default; pass `:test` to retreive the
Return the 60,000 training labels by default; pass `:test` to retrieve the
10,000 test labels.
"""
function labels(set = :train)

View File

@ -1,3 +1,4 @@
"Stanford Sentiment Treebank dataset."
module Sentiment
using ZipFile
@ -39,8 +40,28 @@ function gettrees(name)
return parsetree.(ss)
end
"""
train()
Return the train split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
train() = gettrees("train")
"""
test()
Return the test split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
test() = gettrees("test")
"""
dev()
Return the dev split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
dev() = gettrees("dev")
end

View File

@ -1,41 +1,6 @@
import Adapt: adapt, adapt_storage
using Zygote: IdSet
functor(x) = (), _ -> x
functor(x::Tuple) = x, y -> y
functor(x::NamedTuple) = x, y -> y
functor(x::AbstractArray) = x, y -> y
functor(x::AbstractArray{<:Number}) = (), _ -> x
function makefunctor(m::Module, T, fs = fieldnames(T))
@eval m begin
Flux.functor(x::$T) = ($([:($f=x.$f) for f in fs]...),), y -> $T(y...)
end
end
function functorm(T, fs = nothing)
fs == nothing || isexpr(fs, :tuple) || error("@functor T (a, b)")
fs = fs == nothing ? [] : [:($(map(QuoteNode, fs.args)...),)]
:(makefunctor(@__MODULE__, $(esc(T)), $(fs...)))
end
macro functor(args...)
functorm(args...)
end
isleaf(x) = functor(x)[1] === ()
function fmap1(f, x)
func, re = functor(x)
re(map(f, func))
end
function fmap(f, x; cache = IdDict())
haskey(cache, x) && return cache[x]
cache[x] = isleaf(x) ? f(x) : fmap1(x -> fmap(f, x, cache = cache), x)
end
import Functors: @functor, functor, fmap
trainable(m) = functor(m)[1]
@ -59,7 +24,7 @@ testmode!(m, mode = true) = m
trainmode!(m, mode = true)
Set a layer of model's train mode (see below).
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)).
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)`).
_Note_: if you manually set a model into train mode, you need to manually place
it into test mode during testing phase.

View File

@ -4,17 +4,23 @@
Chain multiple layers / functions together, so that they are called in sequence
on a given input.
```julia
m = Chain(x -> x^2, x -> x+1)
m(5) == 26
m = Chain(Dense(10, 5), Dense(5, 2))
x = rand(10)
m(x) == m[2](m[1](x))
```
`Chain` also supports indexing and slicing, e.g. `m[2]` or `m[1:end-1]`.
`m[1:3](x)` will calculate the output of the first three layers.
# Examples
```jldoctest
julia> m = Chain(x -> x^2, x -> x+1);
julia> m(5) == 26
true
julia> m = Chain(Dense(10, 5), Dense(5, 2));
julia> x = rand(10);
julia> m(x) == m[2](m[1](x))
true
```
"""
struct Chain{T<:Tuple}
layers::T
@ -24,7 +30,7 @@ end
@forward Chain.layers Base.getindex, Base.length, Base.first, Base.last,
Base.iterate, Base.lastindex
functor(c::Chain) = c.layers, ls -> Chain(ls...)
functor(::Type{<:Chain}, c) = c.layers, ls -> Chain(ls...)
applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))
@ -60,6 +66,7 @@ outdims(c::Chain, isize) = foldl(∘, map(l -> (x -> outdims(l, x)), c.layers))(
# only slightly changed to better handle interaction with Zygote @dsweber2
"""
activations(c::Chain, input)
Calculate the forward results of each layers in Chain `c` with `input` as model input.
"""
function activations(c::Chain, input)
@ -78,24 +85,24 @@ extraChain(::Tuple{}, x) = ()
"""
Dense(in::Integer, out::Integer, σ = identity)
Creates a traditional `Dense` layer with parameters `W` and `b`.
Create a traditional `Dense` layer with parameters `W` and `b`.
y = σ.(W * x .+ b)
The input `x` must be a vector of length `in`, or a batch of vectors represented
as an `in × N` matrix. The out `y` will be a vector or batch of length `out`.
```julia
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> d = Dense(5, 2)
Dense(5, 2)
julia> d(rand(5))
Tracked 2-element Array{Float64,1}:
0.00257447
-0.00449443
```
2-element Array{Float32,1}:
-0.16210233
0.12311903```
"""
struct Dense{F,S,T}
struct Dense{F,S<:AbstractArray,T<:AbstractArray}
W::S
b::T
σ::F
@ -145,7 +152,7 @@ outdims(l::Dense, isize) = (size(l.W)[1],)
"""
Diagonal(in::Integer)
Creates an element-wise linear transformation layer with learnable
Create an element-wise linear transformation layer with learnable
vectors `α` and `β`:
y = α .* x .+ β
@ -176,18 +183,11 @@ outdims(l::Diagonal, isize) = (length(l.α),)
"""
Maxout(over)
`Maxout` is a neural network layer, which has a number of internal layers,
which all have the same input, and the maxout returns the elementwise maximium
of the internal layers' outputs.
The [Maxout](https://arxiv.org/pdf/1302.4389.pdf) layer has a number of
internal layers which all receive the same input. It returns the elementwise
maximum of the internal layers' outputs.
Maxout over linear dense layers satisfies the univeral approximation theorem.
Reference:
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
2013. Maxout networks.
In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (ICML'13),
Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. JMLR.org III-1319-III-1327.
https://arxiv.org/pdf/1302.4389.pdf
"""
struct Maxout{FS<:Tuple}
over::FS
@ -196,17 +196,18 @@ end
"""
Maxout(f, n_alts)
Constructs a Maxout layer over `n_alts` instances of the layer given by `f`.
The function takes no arguement and should return some callable layer.
Conventionally this is a linear dense layer.
Construct a Maxout layer over `n_alts` instances of the layer given by `f`.
The function takes no arguments and should return some callable layer.
Conventionally, this is a linear dense layer.
For example the following example which
will construct a `Maxout` layer over 4 internal dense linear layers,
each identical in structure (784 inputs, 128 outputs).
# Examples
This constructs a `Maxout` layer over 4 internal dense linear layers, each
identical in structure (784 inputs, 128 outputs):
```julia
insize = 784
outsize = 128
Maxout(()->Dense(insize, outsize), 4)
insize = 784
outsize = 128
Maxout(()->Dense(insize, outsize), 4)
```
"""
function Maxout(f, n_alts)
@ -223,16 +224,18 @@ end
outdims(l::Maxout, isize) = outdims(first(l.over), isize)
"""
SkipConnection(layers, connection)
SkipConnection(layer, connection)
Creates a Skip Connection, of a layer or `Chain` of consecutive layers
plus a shortcut connection. The connection function will combine the result of the layers
with the original input, to give the final output.
Create a skip connection which consists of a layer or `Chain` of consecutive
layers and a shortcut connection linking the block's input to the output
through a user-supplied 2-argument callable. The first argument to the callable
will be propagated through the given `layer` while the second is the unchanged,
"skipped" input.
The simplest 'ResNet'-type connection is just `SkipConnection(layer, +)`,
The simplest "ResNet"-type connection is just `SkipConnection(layer, +)`,
and requires the output of the layers to be the same shape as the input.
Here is a more complicated example:
```
```julia
m = Conv((3,3), 4=>7, pad=(1,1))
x = ones(5,5,4,10);
size(m(x)) == (5, 5, 7, 10)

View File

@ -7,26 +7,60 @@ _convtransoutdims(isize, ksize, ssize, dsize, pad) = (isize .- 1).*ssize .+ 1 .+
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
"""
Conv(size, in=>out)
Conv(size, in=>out, relu)
SamePad
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Padding for convolutional layers will be calculated so that outputshape == inputshape when stride = 1.
Example: Applying Conv layer to a 1-channel input using a 2x2 window size,
giving us a 16-channel output. Output is activated with ReLU.
For stride > 1 the output shape depends on the type of convolution layer.
"""
struct SamePad end
size = (2,2)
calc_padding(pad, k::NTuple{N,T}, dilation, stride) where {T,N}= expand(Val(2*N), pad)
function calc_padding(::SamePad, k::NTuple{N,T}, dilation, stride) where {N,T}
#Ref: "A guide to convolution arithmetic for deep learning" https://arxiv.org/pdf/1603.07285
# Effective kernel size, including dilation
k_eff = @. k + (k - 1) * (dilation - 1)
# How much total padding needs to be applied?
pad_amt = @. k_eff - 1
# In case amount of padding is odd we need to apply different amounts to each side.
return Tuple(mapfoldl(i -> [ceil(Int, i/2), floor(Int, i/2)], vcat, pad_amt))
end
"""
Conv(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
filter = (2,2)
in = 1
out = 16
Conv((2, 2), 1=>16, relu)
Standard convolutional layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
# Examples
Apply a `Conv` layer to a 1-channel input using a 2×2 window filter size, giving us a
16-channel output. Output is activated with ReLU.
```julia
filter = (2,2)
in = 1
out = 16
Conv(filter, in => out, relu)
```
"""
struct Conv{N,M,F,A,V}
σ::F
@ -37,25 +71,68 @@ struct Conv{N,M,F,A,V}
dilation::NTuple{N,Int}
end
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
"""
Conv(weight::AbstractArray, bias::AbstractArray)
Conv(weight::AbstractArray, bias::AbstractArray, activation)
Constructs the convolutional layer with user defined weight and bias arrays.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
There is also a keyword-only constuctor available for all convoultional
layers.
```julia
weight = rand(Float32, 3, 3, 5)
bias = zeros(Float32, 5)
Conv(weight = weight,
bias = bias,
σ = sigmoid)
```
"""
function Conv(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return Conv(σ, w, b, stride, pad, dilation)
end
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
Conv(init(k..., ch...), zeros(ch[2]), σ,
stride = stride, pad = pad, dilation = dilation)
function Conv(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
Conv(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
"""
convfilter(filter::Tuple, in=>out)
Constructs a standard convolutional weight matrix with given `filter` and
channels from `in` to `out`.
Accepts the keyword `init` (default: `glorot_uniform`) to control the sampling
distribution.
See also: [`depthwiseconvfilter`](@ref)
"""
convfilter(filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform) where N = init(filter..., ch...)
function Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, ch, init = init), bias = zeros(ch[2])) where N
Conv(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor Conv
function (c::Conv)(x::AbstractArray)
# TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ, b = c.σ, reshape(c.bias, ntuple(_->1, length(c.stride))..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(conv(x, c.weight, cdims) .+ b)
end
@ -76,8 +153,8 @@ end
"""
outdims(l::Conv, isize::Tuple)
Calculate the output dimensions given the input dimensions, `isize`.
Batch size and channel size are ignored as per `NNlib.jl`.
Calculate the output dimensions given the input dimensions `isize`.
Batch size and channel size are ignored as per [NNlib.jl](https://github.com/FluxML/NNlib.jl).
```julia
m = Conv((3, 3), 3 => 16)
@ -89,16 +166,23 @@ outdims(l::Conv, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
ConvTranspose(size, in=>out)
ConvTranspose(size, in=>out, relu)
ConvTranspose(filter, in=>out)
ConvTranspose(filter, in=>out, activation)
ConvTranspose(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
Standard convolutional transpose layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == stride * inputsize - stride + 1.
"""
struct ConvTranspose{N,M,F,A,V}
σ::F
@ -109,18 +193,39 @@ struct ConvTranspose{N,M,F,A,V}
dilation::NTuple{N,Int}
end
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
"""
ConvTranspose(weight::AbstractArray, bias::AbstractArray)
ConvTranspose(weight::AbstractArray, bias::AbstractArray, activation)
Constructs the convolutional transpose layer with user defined weight and bias arrays.
forward pass.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function ConvTranspose(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return ConvTranspose(σ, w, b, stride, pad, dilation)
end
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
function ConvTranspose(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
ConvTranspose(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, reverse(ch), init = init), bias = zeros(ch[2])) where N
ConvTranspose(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor ConvTranspose
@ -132,9 +237,9 @@ function conv_transpose_dims(c::ConvTranspose, x::AbstractArray)
batch_size = size(x)[end]
# Create DenseConvDims() that looks like the corresponding conv()
return DenseConvDims((I..., C_in, batch_size), size(c.weight);
stride=c.stride,
padding=c.pad,
dilation=c.dilation,
stride=c.stride,
padding=c.pad,
dilation=c.dilation,
)
end
@ -145,7 +250,7 @@ function (c::ConvTranspose)(x::AbstractArray)
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = conv_transpose_dims(c, x)
return σ.(∇conv_data(x, c.weight, cdims) .+ b)
σ.(∇conv_data(x, c.weight, cdims) .+ b)
end
function Base.show(io::IO, l::ConvTranspose)
@ -164,17 +269,24 @@ end
outdims(l::ConvTranspose{N}, isize) where N = _convtransoutdims(isize[1:2], size(l.weight)[1:N], l.stride, l.dilation, l.pad)
"""
DepthwiseConv(size, in=>out)
DepthwiseConv(size, in=>out, relu)
DepthwiseConv(filter::Tuple, in=>out)
DepthwiseConv(filter::Tuple, in=>out, activation)
DepthwiseConv(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
Depthwise convolutional layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Note that `out` must be an integer multiple of `in`.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
"""
struct DepthwiseConv{N,M,F,A,V}
σ::F
@ -185,20 +297,54 @@ struct DepthwiseConv{N,M,F,A,V}
dilation::NTuple{N,Int}
end
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
"""
DepthwiseConv(weight::AbstractArray, bias::AbstractArray)
DepthwiseConv(weight::AbstractArray, bias::AbstractArray, activation)
Constructs the `DepthwiseConv` layer with user defined weight and bias arrays.
forward pass.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function DepthwiseConv(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return DepthwiseConv(σ, w, b, stride, pad, dilation)
end
function DepthwiseConv(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
DepthwiseConv(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
"""
depthwiseconvfilter(filter::Tuple, in=>out)
Constructs a depthwise convolutional weight array defined by `filter` and channels
from `in` to `out`.
Accepts the keyword `init` (default: `glorot_uniform`) to control the sampling
distribution.
See also: [`convfilter`](@ref)
"""
depthwiseconvfilter(filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform) where N = init(filter..., div(ch[2], ch[1]), ch[1])
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = depthwiseconvfilter(k, ch, init = init), bias = zeros(ch[2])) where N
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
return DepthwiseConv(
init(k..., div(ch[2], ch[1]), ch[1]),
zeros(ch[2]),
weight,
bias,
σ;
stride = stride,
pad = pad,
@ -231,25 +377,34 @@ outdims(l::DepthwiseConv, isize) =
output_size(DepthwiseConvDims(_paddims(isize, (1, 1, size(l.weight)[end], 1)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
CrossCor(size, in=>out)
CrossCor(size, in=>out, relu)
CrossCor(filter, in=>out)
CrossCor(filter, in=>out, activation)
CrossCor(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
Standard cross convolutional layer. `size` should be a tuple like `(2, 2)`.
Standard cross convolutional layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Example: Applying CrossCor layer to a 1-channel input using a 2x2 window size,
giving us a 16-channel output. Output is activated with ReLU.
size = (2,2)
in = 1
out = 16
CrossCor((2, 2), 1=>16, relu)
Data should be stored in WHCN order (width, height, # channels, # batches).
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
# Examples
Apply a `CrossCor` layer to a 1-channel input using a 2×2 window filter size, giving us a
16-channel output. Output is activated with ReLU.
```julia
filter = (2,2)
in = 1
out = 16
CrossCor((2, 2), 1=>16, relu)
```
"""
struct CrossCor{N,M,F,A,V}
σ::F
@ -260,18 +415,39 @@ struct CrossCor{N,M,F,A,V}
dilation::NTuple{N,Int}
end
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
"""
CrossCor(weight::AbstractArray, bias::AbstractArray)
CrossCor(weight::AbstractArray, bias::AbstractArray, activation)
Constructs the standard cross convolutional layer with user defined weight and bias
arrays.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function CrossCor(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return CrossCor(σ, w, b, stride, pad, dilation)
end
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
CrossCor(init(k..., ch...), zeros(ch[2]), σ,
function CrossCor(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
CrossCor(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
function CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, ch, init = init), bias = zeros(ch[2])) where N
CrossCor(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor CrossCor
@ -305,11 +481,62 @@ outdims(l::CrossCor, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
MaxPool(k)
GlobalMaxPool()
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
Global max pooling layer.
Takes the keyword arguments `pad` and `stride`.
Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output,
by performing max pooling on the complete (w,h)-shaped feature maps.
"""
struct GlobalMaxPool end
function (g::GlobalMaxPool)(x)
# Input size
x_size = size(x)
# Kernel size
k = x_size[1:end-2]
# Pooling dimensions
pdims = PoolDims(x, k)
return maxpool(x, pdims)
end
function Base.show(io::IO, g::GlobalMaxPool)
print(io, "GlobalMaxPool()")
end
"""
GlobalMeanPool()
Global mean pooling layer.
Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output,
by performing mean pooling on the complete (w,h)-shaped feature maps.
"""
struct GlobalMeanPool end
function (g::GlobalMeanPool)(x)
# Input size
x_size = size(x)
# Kernel size
k = x_size[1:end-2]
# Pooling dimensions
pdims = PoolDims(x, k)
return meanpool(x, pdims)
end
function Base.show(io::IO, g::GlobalMeanPool)
print(io, "GlobalMeanPool()")
end
"""
MaxPool(k; pad = 0, stride = k)
Max pooling layer. `k` is the size of the window for each dimension of the input.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
=======
"""
struct MaxPool{N,M}
k::NTuple{N,Int}
@ -319,8 +546,7 @@ end
function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = expand(Val(2*N), pad)
pad = calc_padding(pad, k, 1, stride)
return MaxPool(k, pad, stride)
end
@ -336,11 +562,11 @@ end
outdims(l::MaxPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))
"""
MeanPool(k)
MeanPool(k; pad = 0, stride = k)
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
Mean pooling layer. `k` is the size of the window for each dimension of the input.
Takes the keyword arguments `pad` and `stride`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
"""
struct MeanPool{N,M}
k::NTuple{N,Int}
@ -350,7 +576,7 @@ end
function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = expand(Val(2*N), pad)
pad = calc_padding(pad, k, 1, stride)
return MeanPool(k, pad, stride)
end
@ -363,4 +589,4 @@ function Base.show(io::IO, m::MeanPool)
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
outdims(l::MeanPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))
outdims(l::MeanPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))

View File

@ -10,14 +10,14 @@ _dropout_shape(s, dims) = tuple((i ∉ dims ? 1 : si for (i, si) ∈ enumerate(s
_dropout_kernel(y::T, p, q) where {T} = y > p ? T(1 / q) : T(0)
"""
dropout(p, dims = :)
dropout(x, p; dims = :)
Dropout function. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1/(1-p)`. The `dims` argument is to specify the unbroadcasted
dimensions, i.e. `dims=1` does dropout along columns and `dims=2` along rows. This is
used as a regularisation, i.e. it reduces overfitting during training.
See also [`Dropout`](@ref).
The dropout function. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1 / (1 - p)`. `dims` specifies the unbroadcasted dimensions,
e.g. `dims=1` applies dropout along columns and `dims=2` along rows.
This is used as a regularisation, i.e. it reduces overfitting during training.
See also the [`Dropout`](@ref) layer.
"""
dropout(x, p; dims = :) = x
@ -30,9 +30,9 @@ end
"""
Dropout(p, dims = :)
A Dropout layer. In the forward pass, applies the [`dropout`](@ref) function on the input.
Dropout layer. In the forward pass, apply the [`Flux.dropout`](@ref) function on the input.
Does nothing to the input once [`testmode!`](@ref) is false.
Does nothing to the input once [`Flux.testmode!`](@ref) is `true`.
"""
mutable struct Dropout{F,D}
p::F
@ -64,12 +64,13 @@ end
"""
AlphaDropout(p)
A dropout layer. It is used in Self-Normalizing Neural Networks.
(https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)
The AlphaDropout layer ensures that mean and variance of activations remains the same as before.
Does nothing to the input once [`testmode!`](@ref) is false.
A dropout layer. Used in
[Self-Normalizing Neural Networks](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf).
The AlphaDropout layer ensures that mean and variance of activations
remain the same as before.
Does nothing to the input once [`testmode!`](@ref) is true.
"""
mutable struct AlphaDropout{F}
p::F
@ -100,8 +101,8 @@ testmode!(m::AlphaDropout, mode = true) =
LayerNorm(h::Integer)
A [normalisation layer](https://arxiv.org/pdf/1607.06450.pdf) designed to be
used with recurrent hidden states of size `h`. Normalises the mean/stddev of
each input before applying a per-neuron gain/bias.
used with recurrent hidden states of size `h`. Normalises the mean and standard
deviation of each input before applying a per-neuron gain/bias.
"""
struct LayerNorm{T}
diag::Diagonal{T}
@ -123,8 +124,8 @@ end
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Batch Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
[Batch Normalization](https://arxiv.org/pdf/1502.03167.pdf) layer.
`channels` should be the size of the channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
@ -136,10 +137,7 @@ per-channel `bias` and `scale` parameters).
Use [`testmode!`](@ref) during inference.
See [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf).
Example:
# Examples
```julia
m = Chain(
Dense(28^2, 64),
@ -213,37 +211,6 @@ function Base.show(io::IO, l::BatchNorm)
print(io, ")")
end
"""
InstanceNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Instance Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
Use [`testmode!`](@ref) during inference.
See [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
Example:
```julia
m = Chain(
Dense(28^2, 64),
InstanceNorm(64, relu),
Dense(64, 10),
InstanceNorm(10),
softmax)
```
"""
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
mutable struct InstanceNorm{F,V,W,N}
@ -258,6 +225,34 @@ mutable struct InstanceNorm{F,V,W,N}
end
# TODO: deprecate in v0.11
"""
InstanceNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
[Instance Normalization](https://arxiv.org/abs/1607.08022) layer.
`channels` should be the size of the channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
Use [`testmode!`](@ref) during inference.
# Examples
```julia
m = Chain(
Dense(28^2, 64),
InstanceNorm(64, relu),
Dense(64, 10),
InstanceNorm(10),
softmax)
```
"""
InstanceNorm(λ, β, γ, μ, σ², ϵ, momentum) = InstanceNorm(λ, β, γ, μ, σ², ϵ, momentum, nothing)
InstanceNorm(chs::Integer, λ = identity;
@ -316,28 +311,27 @@ function Base.show(io::IO, l::InstanceNorm)
end
"""
Group Normalization.
This layer can outperform Batch-Normalization and Instance-Normalization.
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i),
ϵ = 1f-5, momentum = 0.1f0)
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i),
ϵ = 1f-5, momentum = 0.1f0)
[Group Normalization](https://arxiv.org/pdf/1803.08494.pdf) layer.
This layer can outperform Batch Normalization and Instance Normalization.
``chs`` is the number of channels, the channel dimension of your input.
For an array of N dimensions, the (N-1)th index is the channel dimension.
`chs` is the number of channels, the channel dimension of your input.
For an array of N dimensions, the `N-1`th index is the channel dimension.
``G`` is the number of groups along which the statistics would be computed.
`G` is the number of groups along which the statistics are computed.
The number of channels must be an integer multiple of the number of groups.
Use [`testmode!`](@ref) during inference.
Example:
```
# Examples
```julia
m = Chain(Conv((3,3), 1=>32, leakyrelu;pad = 1),
GroupNorm(32,16)) # 32 channels, 16 groups (G = 16), thus 2 channels per group used
GroupNorm(32,16))
# 32 channels, 16 groups (G = 16), thus 2 channels per group used
```
Link : https://arxiv.org/pdf/1803.08494.pdf
"""
mutable struct GroupNorm{F,V,W,N,T}
G::T # number of groups

View File

@ -12,16 +12,16 @@ in the background. `cell` should be a model of the form:
h, y = cell(h, x...)
For example, here's a recurrent network that keeps a running total of its inputs.
For example, here's a recurrent network that keeps a running total of its inputs:
```julia
accum(h, x) = (h+x, x)
accum(h, x) = (h + x, x)
rnn = Flux.Recur(accum, 0)
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
```
"""
mutable struct Recur{T}
@ -47,9 +47,10 @@ Base.show(io::IO, m::Recur) = print(io, "Recur(", m.cell, ")")
Reset the hidden state of a recurrent layer back to its original value.
Assuming you have a `Recur` layer `rnn`, this is roughly equivalent to
rnn.state = hidden(rnn.cell)
Assuming you have a `Recur` layer `rnn`, this is roughly equivalent to:
```julia
rnn.state = hidden(rnn.cell)
```
"""
reset!(m::Recur) = (m.state = m.init)
reset!(m) = foreach(reset!, functor(m)[1])
@ -135,8 +136,8 @@ Base.show(io::IO, l::LSTMCell) =
"""
LSTM(in::Integer, out::Integer)
Long Short Term Memory recurrent layer. Behaves like an RNN but generally
exhibits a longer memory span over sequences.
[Long Short Term Memory](https://www.researchgate.net/publication/13853244_Long_Short-term_Memory)
recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
@ -176,8 +177,8 @@ Base.show(io::IO, l::GRUCell) =
"""
GRU(in::Integer, out::Integer)
Gated Recurrent Unit layer. Behaves like an RNN but generally
exhibits a longer memory span over sequences.
[Gated Recurrent Unit](https://arxiv.org/abs/1406.1078) layer. Behaves like an
RNN but generally exhibits a longer memory span over sequences.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.

View File

@ -2,7 +2,8 @@
"""
mae(, y)
Return the mean of absolute error `sum(abs.(ŷ .- y)) / length(y)`
Return the mean of absolute error; calculated as
`sum(abs.(ŷ .- y)) / length(y)`.
"""
mae(, y) = sum(abs.( .- y)) * 1 // length(y)
@ -10,7 +11,14 @@ mae(ŷ, y) = sum(abs.(ŷ .- y)) * 1 // length(y)
"""
mse(, y)
Return the mean squared error `sum((ŷ .- y).^2) / length(y)`.
Return the mean squared error between and y; calculated as
`sum((ŷ .- y).^2) / length(y)`.
# Examples
```jldoctest
julia> Flux.mse([0, 2], [1, 1])
1//1
```
"""
mse(, y) = sum(( .- y).^2) * 1 // length(y)
@ -18,10 +26,11 @@ mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
"""
msle(, y; ϵ=eps(eltype()))
Returns the mean of the squared logarithmic errors `sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) / length(y)`.
The `ϵ` term provides numerical stability.
Return the mean of the squared logarithmic errors; calculated as
`sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) / length(y)`.
The `ϵ` term provides numerical stability.
This error penalizes an under-predicted estimate greater than an over-predicted estimate.
Penalizes an under-predicted estimate greater than an over-predicted estimate.
"""
msle(, y; ϵ=eps(eltype())) = sum((log.( .+ ϵ) .- log.(y .+ ϵ)).^2) * 1 // length(y)
@ -30,50 +39,68 @@ msle(ŷ, y; ϵ=eps(eltype(ŷ))) = sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) *
"""
huber_loss(, y; δ=1.0)
Computes the mean of the Huber loss given the prediction `` and true values `y`. By default, δ is set to 1.0.
Return the mean of the [Huber loss](https://en.wikipedia.org/wiki/Huber_loss)
given the prediction `` and true values `y`.
| 0.5*| - y|, for | - y| <= δ
Hubber loss = |
| δ*(| - y| - 0.5*δ), otherwise
[`Huber Loss`](https://en.wikipedia.org/wiki/Huber_loss).
| 0.5 * | - y|, for | - y| <= δ
Huber loss = |
| δ * (| - y| - 0.5 * δ), otherwise
"""
#TODO: remove dropgrad when Zygote can handle this function with CuArrays
function huber_loss(, y; δ=eltype()(1))
abs_error = abs.( .- y)
temp = abs_error .< δ
temp = Zygote.dropgrad(abs_error .< δ)
x = eltype()(0.5)
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
return -sum(y .* log.()) * 1 // size(y, 2)
return -sum(xlogy.(y, )) * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
return -sum(y .* log.()) .* weight * 1 // size(y, 2)
return -sum(xlogy.(y, )) .* weight * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
return -sum(y .* log.() .* weight) * 1 // size(y, 2)
return -sum(xlogy.(y, ) .* weight) * 1 // size(y, 2)
end
"""
crossentropy(, y; weight=1)
crossentropy(, y; weight = nothing)
Return the crossentropy computed as `-sum(y .* log.(ŷ) .* weight) / size(y, 2)`.
Return the cross entropy between the given probability distributions;
calculated as `-sum(y .* log.(ŷ) .* weight) / size(y, 2)`.
See also [`logitcrossentropy`](@ref), [`binarycrossentropy`](@ref).
`weight` can be `Nothing`, a `Number` or an `AbstractVector`.
`weight=nothing` acts like `weight=1` but is faster.
See also: [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.crossentropy(softmax([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3.085467254747739
```
"""
crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(, y, weight)
"""
logitcrossentropy(, y; weight=1)
logitcrossentropy(, y; weight = 1)
Return the crossentropy computed after a [softmax](@ref) operation:
Return the crossentropy computed after a [`Flux.logsoftmax`](@ref) operation;
calculated as `-sum(y .* logsoftmax(ŷ) .* weight) / size(y, 2)`.
-sum(y .* logsoftmax() .* weight) / size(y, 2)
`logitcrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.crossentropy(softmax(ŷ), y)`](@ref) but it is more numerically stable.
See also [`crossentropy`](@ref), [`binarycrossentropy`](@ref).
See also: [`Flux.crossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitcrossentropy([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3.085467254747738
```
"""
function logitcrossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
return -sum(y .* logsoftmax() .* weight) * 1 // size(y, 2)
@ -82,11 +109,22 @@ end
"""
binarycrossentropy(, y; ϵ=eps())
Return `-y*log(ŷ + ϵ) - (1-y)*log(1-ŷ + ϵ)`. The ϵ term provides numerical stability.
Return ``-y*\\log( + ϵ) - (1-y)*\\log(1- + ϵ)``. The `ϵ` term provides numerical stability.
Typically, the prediction `` is given by the output of a [`sigmoid`](@ref) activation.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3-element Array{Float64,1}:
1.424397097347566
0.35231664672364077
0.8616703662235441
```
"""
binarycrossentropy(, y; ϵ=eps()) = -y*log( + ϵ) - (1 - y)*log(1 - + ϵ)
binarycrossentropy(, y; ϵ=eps()) = -xlogy(y, + ϵ) - xlogy(1 - y, 1 - + ϵ)
# Re-definition to fix interaction with CuArrays.
CuArrays.@cufunc binarycrossentropy(, y; ϵ=eps()) = -y*log( + ϵ) - (1 - y)*log(1 - + ϵ)
@ -94,10 +132,19 @@ CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1
"""
logitbinarycrossentropy(ŷ, y)
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to `binarycrossentropy(σ(ŷ), y)`
but it is more numerically stable.
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable.
See also [`binarycrossentropy`](@ref), [`sigmoid`](@ref), [`logsigmoid`](@ref).
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3-element Array{Float64,1}:
1.4243970973475661
0.35231664672364094
0.8616703662235443
```
"""
logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ()
@ -107,26 +154,27 @@ CuArrays.@cufunc logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ(ŷ)
"""
normalise(x; dims=1)
Normalises `x` to mean 0 and standard deviation 1, across the dimensions given by `dims`. Defaults to normalising over columns.
Normalise `x` to mean 0 and standard deviation 1 across the dimensions given by `dims`.
Defaults to normalising over columns.
```julia-repl
```jldoctest
julia> a = reshape(collect(1:9), 3, 3)
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
1 4 7
2 5 8
3 6 9
julia> normalise(a)
julia> Flux.normalise(a)
3×3 Array{Float64,2}:
-1.22474 -1.22474 -1.22474
-1.22474 -1.22474 -1.22474
0.0 0.0 0.0
1.22474 1.22474 1.22474
julia> normalise(a, dims=2)
julia> Flux.normalise(a, dims=2)
3×3 Array{Float64,2}:
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
```
"""
function normalise(x::AbstractArray; dims=1)
@ -138,13 +186,17 @@ end
"""
kldivergence(, y)
KLDivergence is a measure of how much one probability distribution is different from the other.
It is always non-negative and zero only when both the distributions are equal everywhere.
Return the
[Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
between the given probability distributions.
[KL Divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence).
KL divergence is a measure of how much one probability distribution is different
from the other.
It is always non-negative and zero only when both the distributions are equal
everywhere.
"""
function kldivergence(, y)
entropy = sum(y .* log.(y)) * 1 //size(y,2)
entropy = sum(xlogx.(y)) * 1 //size(y,2)
cross_entropy = crossentropy(, y)
return entropy + cross_entropy
end
@ -152,51 +204,93 @@ end
"""
poisson(, y)
Poisson loss function is a measure of how the predicted distribution diverges from the expected distribution.
Returns `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`
Return how much the predicted distribution `` diverges from the expected Poisson
distribution `y`; calculated as `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`.
[Poisson Loss](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
[More information.](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
"""
poisson(, y) = sum( .- y .* log.()) * 1 // size(y,2)
poisson(, y) = sum( .- xlogy.(y, )) * 1 // size(y,2)
"""
hinge(, y)
Measures the loss given the prediction `` and true labels `y` (containing 1 or -1).
Returns `sum((max.(0, 1 .- ŷ .* y))) / size(y, 2)`
Return the [hinge loss](https://en.wikipedia.org/wiki/Hinge_loss) given the
prediction `` and true labels `y` (containing 1 or -1); calculated as
`sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)`.
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss)
See also [`squared_hinge`](@ref).
See also: [`squared_hinge`](@ref)
"""
hinge(, y) = sum(max.(0, 1 .- .* y)) * 1 // size(y, 2)
"""
squared_hinge(, y)
Computes squared hinge loss given the prediction `` and true labels `y` (conatining 1 or -1).
Returns `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`
Return the squared hinge loss given the prediction `` and true labels `y`
(containing 1 or -1); calculated as `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`.
See also [`hinge`](@ref).
See also: [`hinge`](@ref)
"""
squared_hinge(, y) = sum((max.(0, 1 .- .* y)).^2) * 1 // size(y, 2)
"""
dice_coeff_loss(, y; smooth=1)
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score.
Returns `1 - 2*sum(|ŷ .* y| + smooth) / (sum(ŷ.^2) + sum(y.^2) + smooth)`
[V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
Return a loss based on the dice coefficient.
Used in the [V-Net](https://arxiv.org/pdf/1606.04797v1.pdf) image segmentation
architecture.
Similar to the F1_score. Calculated as:
1 - 2*sum(| .* y| + smooth) / (sum(.^2) + sum(y.^2) + smooth)`
"""
dice_coeff_loss(, y; smooth=eltype()(1.0)) = 1 - (2*sum(y .* ) + smooth) / (sum(y.^2) + sum(.^2) + smooth)
"""
tversky_loss(, y; β=0.7)
Used with imbalanced data to give more weightage to False negatives.
Return the [Tversky loss](https://arxiv.org/pdf/1706.05721.pdf).
Used with imbalanced data to give more weight to false negatives.
Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
Returns `1 - sum(|y .* ŷ| + 1) / (sum(y .* ŷ + β*(1 .- y) .* ŷ + (1 - β)*y .* (1 .- ŷ)) + 1)`
[Tversky loss function for image segmentation using 3D fully convolutional deep networks](https://arxiv.org/pdf/1706.05721.pdf)
Calculated as:
1 - sum(|y .* | + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
"""
tversky_loss(, y; β=eltype()(0.7)) = 1 - (sum(y .* ) + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
"""
flatten(x::AbstractArray)
Transform (w, h, c, b)-shaped input into (w × h × c, b)-shaped output
by linearizing all values for each element in the batch.
"""
function flatten(x::AbstractArray)
return reshape(x, :, size(x)[end])
end
"""
xlogx(x)
Return `x * log(x)` for `x ≥ 0`, handling `x = 0` by taking the downward limit.
"""
function xlogx(x)
result = x * log(x)
ifelse(iszero(x), zero(result), result)
end
CuArrays.@cufunc function xlogx(x)
result = x * log(x)
ifelse(iszero(x), zero(result), result)
end
"""
xlogy(x, y)
Return `x * log(y)` for `y > 0` with correct limit at `x = 0`.
"""
function xlogy(x, y)
result = x * log(y)
ifelse(iszero(x), zero(result), result)
end
CuArrays.@cufunc function xlogy(x, y)
result = x * log(y)
ifelse(iszero(x), zero(result), result)
end
@adjoint function broadcasted(::typeof(xlogy), x::Zygote.Numeric, y::Zygote.Numeric)
res = xlogy.(x, y)
res, Δ -> (nothing, Zygote.unbroadcast(x, xlogy.(Δ, y)), Zygote.unbroadcast(y, Δ .* x ./ y))
end

View File

@ -27,7 +27,8 @@ Base.getindex(xs::OneHotMatrix, ::Colon, ::Colon) = OneHotMatrix(xs.height, copy
Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data)
A::AbstractMatrix * B::OneHotMatrix = A[:, map(x->x.ix, B.data)]
# remove workaround when https://github.com/JuliaGPU/CuArrays.jl/issues/676 is fixed
A::AbstractMatrix * B::OneHotMatrix = A[:, cpu(map(x->x.ix, B.data))]
Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(length(x), [x, xs...])
@ -37,30 +38,28 @@ import Adapt: adapt, adapt_structure
adapt_structure(T, xs::OneHotMatrix) = OneHotMatrix(xs.height, adapt(T, xs.data))
import .CuArrays: CuArray, cudaconvert
import .CuArrays: CuArray, CuArrayStyle, cudaconvert
import Base.Broadcast: BroadcastStyle, ArrayStyle
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = ArrayStyle{CuArray}()
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = CuArrayStyle{2}()
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
"""
onehot(l, labels[, unk])
Create an [`OneHotVector`](@ref) wtih `l`-th element be `true` based on possible `labels` set.
If `unk` is given, it retruns `onehot(unk, labels)` if the input label `l` is not find in `labels`; otherwise
it will error.
## Examples
Create a `OneHotVector` with its `l`-th element `true` based on the
possible set of `labels`.
If `unk` is given, return `onehot(unk, labels)` if the input label `l` is not found
in `labels`; otherwise, it will raise an error.
# Examples
```jldoctest
julia> using Flux: onehot
julia> onehot(:b, [:a, :b, :c])
julia> Flux.onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector:
0
1
0
julia> onehot(:c, [:a, :b, :c])
julia> Flux.onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector:
0
0
@ -82,15 +81,14 @@ end
"""
onehotbatch(ls, labels[, unk...])
Create an [`OneHotMatrix`](@ref) with a batch of labels based on possible `labels` set, returns the
`onehot(unk, labels)` if given labels `ls` is not found in set `labels`.
## Examples
Create a `OneHotMatrix` with a batch of labels based on the
possible set of `labels`.
If `unk` is given, return [`onehot(unk, labels)`](@ref) if one of the input
labels `ls` is not found in `labels`; otherwise it will error.
# Examples
```jldoctest
julia> using Flux: onehotbatch
julia> onehotbatch([:b, :a, :b], [:a, :b, :c])
julia> Flux.onehotbatch([:b, :a, :b], [:a, :b, :c])
3×3 Flux.OneHotMatrix{Array{Flux.OneHotVector,1}}:
0 1 0
1 0 1
@ -107,13 +105,12 @@ Base.argmax(xs::OneHotVector) = xs.ix
Inverse operations of [`onehot`](@ref).
# Examples
```jldoctest
julia> using Flux: onecold
julia> onecold([true, false, false], [:a, :b, :c])
julia> Flux.onecold([true, false, false], [:a, :b, :c])
:a
julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
julia> Flux.onecold([0.3, 0.2, 0.5], [:a, :b, :c])
:c
```
"""

View File

@ -1,9 +1,12 @@
module Optimise
using LinearAlgebra
export train!, update!,
SGD, Descent, ADAM, Momentum, Nesterov, RMSProp,
Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,RADAM,
InvDecay, ExpDecay, WeightDecay, stop, Optimiser
InvDecay, ExpDecay, WeightDecay, stop, Optimiser,
ClipValue, ClipNorm
include("optimisers.jl")
include("train.jl")

View File

@ -6,24 +6,25 @@ const ϵ = 1e-8
# TODO: should use weak refs
"""
Descent(η)
Descent(η = 0.1)
Classic gradient descent optimiser with learning rate `η`.
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`
## Parameters
- Learning Rate (η): The amount by which the gradients are discounted before updating the weights. Defaults to `0.1`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
## Example
```julia-repl
opt = Descent() # uses default η (0.1)
# Examples
```julia
opt = Descent()
opt = Descent(0.3) # use provided η
opt = Descent(0.3)
ps = params(model)
gs = gradient(ps) do
loss(x, y)
loss(x, y)
end
Flux.Optimise.update!(opt, ps, gs)
@ -40,17 +41,19 @@ function apply!(o::Descent, x, Δ)
end
"""
Momentum(η, ρ)
Momentum(η = 0.01, ρ = 0.9)
Gradient descent with learning rate `η` and momentum `ρ`.
Gradient descent optimizer with learning rate `η` and momentum `ρ`.
## Parameters
- Learning Rate (`η`): Amount by which gradients are discounted before updating the weights. Defaults to `0.01`.
- Momentum (`ρ`): Parameter that accelerates descent in the relevant direction and dampens oscillations. Defaults to `0.9`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
## Examples
# Examples
```julia
opt = Momentum() # uses defaults of η = 0.01 and ρ = 0.9
opt = Momentum()
opt = Momentum(0.01, 0.99)
```
@ -71,17 +74,19 @@ function apply!(o::Momentum, x, Δ)
end
"""
Nesterov(η, ρ)
Nesterov(η = 0.001, ρ = 0.9)
Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
Gradient descent optimizer with learning rate `η` and Nesterov momentum `ρ`.
## Parameters
- Learning Rate (η): Amount by which the gradients are dicsounted berfore updating the weights. Defaults to `0.001`.
- Nesterov Momentum (ρ): Parameters controlling the amount of nesterov momentum to be applied. Defaults to `0.9`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Nesterov momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
## Examples
# Examples
```julia
opt = Nesterov() # uses defaults η = 0.001 and ρ = 0.9
opt = Nesterov()
opt = Nesterov(0.003, 0.95)
```
@ -103,23 +108,25 @@ function apply!(o::Nesterov, x, Δ)
end
"""
RMSProp(η, ρ)
RMSProp(η = 0.001, ρ = 0.9)
Implements the RMSProp algortihm. Often a good choice for recurrent networks. Parameters other than learning rate generally don't need tuning.
Optimizer using the
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
algorithm. Often a good choice for recurrent networks. Parameters other than learning rate
generally don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Rho (ρ): Defaults to `0.9`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
## Examples
# Examples
```julia
opt = RMSProp() # uses default η = 0.001 and ρ = 0.9
opt = RMSProp()
opt = RMSProp(0.002, 0.95)
```
## References
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
"""
mutable struct RMSProp
eta::Float64
@ -137,23 +144,22 @@ function apply!(o::RMSProp, x, Δ)
end
"""
ADAM(η, β::Tuple)
ADAM(η = 0.001, β::Tuple = (0.9, 0.999))
Implements the ADAM optimiser.
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
## Paramters
- Learning Rate (`η`): Defaults to `0.001`.
- Beta (`β::Tuple`): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = ADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = ADAM()
opt = ADAM(0.001, (0.9, 0.8))
```
## References
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
mutable struct ADAM
eta::Float64
@ -174,24 +180,22 @@ function apply!(o::ADAM, x, Δ)
end
"""
RADAM(η, β::Tuple)
RADAM(η = 0.001, β::Tuple = (0.9, 0.999))
Implements the rectified ADAM optimizer.
[Rectified ADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimizer.
## Parameters
- Learning Rate (η): Defaults to `0.001`
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = RADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = RADAM()
opt = RADAM(0.001, (0.9, 0.8))
```
## References
[RADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimiser (Rectified ADAM).
"""
mutable struct RADAM
eta::Float64
@ -219,22 +223,22 @@ function apply!(o::RADAM, x, Δ)
end
"""
AdaMax(η, β::Tuple)
AdaMax(η = 0.001, β::Tuple = (0.9, 0.999))
Variant of ADAM based on -norm.
[AdaMax](https://arxiv.org/abs/1412.6980v9) is a variant of ADAM based on the -norm.
## Parameters
- Learning Rate (η): Defaults to `0.001`
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
## Examples
# Examples
```julia
opt = AdaMax() # uses default η and β
opt = AdaMax()
opt = AdaMax(0.001, (0.9, 0.995))
```
## References
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser.
"""
mutable struct AdaMax
eta::Float64
@ -255,23 +259,22 @@ function apply!(o::AdaMax, x, Δ)
end
"""
ADAGrad(η)
ADAGrad(η = 0.1)
Implements AdaGrad. It has parameter specific learning rates based on how frequently it is updated.
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimizer. It has
parameter specific learning rates based on how frequently it is updated.
Parameters don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.1`
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
## Examples
# Examples
```julia
opt = ADAGrad() # uses default η = 0.1
opt = ADAGrad()
opt = ADAGrad(0.001)
```
## References
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
"""
mutable struct ADAGrad
eta::Float64
@ -288,21 +291,21 @@ function apply!(o::ADAGrad, x, Δ)
end
"""
ADADelta(ρ)
ADADelta(ρ = 0.9)
Version of ADAGrad that adapts learning rate based on a window of past gradient updates. Parameters don't need tuning.
[ADADelta](https://arxiv.org/abs/1212.5701) is a version of ADAGrad adapting its learning
rate based on a window of past gradient updates.
Parameters don't need tuning.
## Parameters
- Rho (ρ): Factor by which gradient is decayed at each time step. Defaults to `0.9`.
# Parameters
- Rho (`ρ`): Factor by which the gradient is decayed at each time step.
## Examples
# Examples
```julia
opt = ADADelta() # uses default ρ = 0.9
opt = ADADelta()
opt = ADADelta(0.89)
```
## References
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser.
"""
mutable struct ADADelta
rho::Float64
@ -321,22 +324,23 @@ function apply!(o::ADADelta, x, Δ)
end
"""
AMSGrad(η, β::Tuple)
AMSGrad(η = 0.001, β::Tuple = (0.9, 0.999))
Implements AMSGrad version of the ADAM optimiser. Parameters don't need tuning.
The [AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) version of the ADAM
optimiser. Parameters don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
## Examples
# Examples
```julia
opt = AMSGrad() # uses default η and β
opt = AMSGrad()
opt = AMSGrad(0.001, (0.89, 0.995))
```
## References
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser.
"""
mutable struct AMSGrad
eta::Float64
@ -356,22 +360,23 @@ function apply!(o::AMSGrad, x, Δ)
end
"""
NADAM(η, β::Tuple)
NADAM(η = 0.001, β::Tuple = (0.9, 0.999))
Nesterov variant of ADAM. Parameters don't need tuning.
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) is a Nesterov variant of ADAM.
Parameters don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
## Examples
# Examples
```julia
opt = NADAM() # uses default η and β
opt = NADAM()
opt = NADAM(0.002, (0.89, 0.995))
```
## References
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser.
"""
mutable struct NADAM
eta::Float64
@ -392,23 +397,24 @@ function apply!(o::NADAM, x, Δ)
end
"""
ADAMW(η, β::Tuple, decay)
ADAMW(η = 0.001, β::Tuple = (0.9, 0.999), decay = 0)
Variant of ADAM defined by fixing weight decay regularization.
[ADAMW](https://arxiv.org/abs/1711.05101) is a variant of ADAM fixing (as in repairing) its
weight decay regularization.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to (0.9, 0.999).
- decay: Decay applied to weights during optimisation. Defaults to 0.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
- `decay`: Decay applied to weights during optimisation.
## Examples
# Examples
```julia
opt = ADAMW() # uses default η, β and decay
opt = ADAMW()
opt = ADAMW(0.001, (0.89, 0.995), 0.1)
```
## References
[ADAMW](https://arxiv.org/abs/1711.05101)
"""
ADAMW(η = 0.001, β = (0.9, 0.999), decay = 0) =
Optimiser(ADAM(η, β), WeightDecay(decay))
@ -441,14 +447,13 @@ function apply!(o::Optimiser, x, Δ)
end
"""
InvDecay(γ)
InvDecay(γ = 0.001)
Applies inverse time decay to an optimiser, i.e., the effective step size at iteration `n` is `eta / (1 + γ * n)` where `eta` is the initial step size. The wrapped optimiser's step size is not modified.
Apply inverse time decay to an optimiser, so that the effective step size at
iteration `n` is `eta / (1 + γ * n)` where `eta` is the initial step size.
The wrapped optimiser's step size is not modified.
## Parameters
- gamma (γ): Defaults to `0.001`
## Example
# Examples
```julia
Optimiser(InvDecay(..), Opt(..))
```
@ -469,20 +474,24 @@ function apply!(o::InvDecay, x, Δ)
end
"""
ExpDecay(eta, decay, decay_step, clip)
ExpDecay(η = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4)
Discount the learning rate `eta` by a multiplicative factor `decay` every `decay_step` till a minimum of `clip`.
Discount the learning rate `η` by the factor `decay` every `decay_step` steps till
a minimum of `clip`.
## Parameters
- Learning Rate (eta): Defaults to `0.001`.
- decay: Factor by which the learning rate is discounted. Defaults to `0.1`.
- decay_step: Schedules decay operations by setting number of steps between two decay operations. Defaults to `1000`.
- clip: Minimum value of learning rate. Defaults to `1e-4`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- `decay`: Factor by which the learning rate is discounted.
- `decay_step`: Schedule decay operations by setting the number of steps between
two decay operations.
- `clip`: Minimum value of learning rate.
## Example
# Examples
To apply exponential decay to an optimiser:
```julia
Optimiser(ExpDecay(..), Opt(..))
opt = Optimiser(ExpDecay(), ADAM())
```
"""
@ -500,19 +509,19 @@ function apply!(o::ExpDecay, x, Δ)
η, s, decay = o.eta, o.step, o.decay
n = o.current[x] = get(o.current, x, 0) + 1
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
η = max(η * decay^(s / n), o.clip)
η = max(η * decay, o.clip)
o.eta = η
end
@. Δ *= η
end
"""
WeightDecay(wd)
WeightDecay(wd = 0)
Decays the weight by `wd`
Decay weights by `wd`.
## Parameters
- weight decay (wd): 0
# Parameters
- Weight decay (`wd`)
"""
mutable struct WeightDecay
wd::Real
@ -524,3 +533,31 @@ function apply!(o::WeightDecay, x, Δ)
wd = o.wd
@. Δ += wd * x
end
"""
ClipValue(thresh)
Clip gradients when their absolute value exceeds `thresh`.
"""
mutable struct ClipValue{T}
thresh::T
end
apply!(o::ClipValue, x, Δ) = clamp!(Δ, -o.thresh, o.thresh)
"""
ClipNorm(thresh)
Clip gradients when their L2 norm exceeds `thresh`.
"""
mutable struct ClipNorm{T}
thresh::T
end
function apply!(o::ClipNorm, x, Δ)
Δnrm = norm(Δ)
if Δnrm > o.thresh
rmul!(Δ, o.thresh / Δnrm)
end
return Δ
end

View File

@ -2,23 +2,25 @@ using Juno
import Zygote: Params, gradient
"""
update!(opt, p, g)
update!(opt, ps::Params, gs)
update!(x, )
Perform an update step of the parameters `ps` (or the single parameter `p`)
according to optimizer `opt` and the gradients `gs` (the gradient `g`).
As a result, the parameters are mutated and the optimizer's internal state may change.
update!(x, )
Update the array `x` according to `x .-= x̄`.
"""
function update!(x::AbstractArray, )
x .-=
end
"""
update!(opt, p, g)
update!(opt, ps::Params, gs)
Perform an update step of the parameters `ps` (or the single parameter `p`)
according to optimizer `opt` and the gradients `gs` (the gradient `g`).
As a result, the parameters are mutated and the optimizer's internal state may change.
"""
function update!(opt, x, )
x .-= apply!(opt, x, )
end
@ -41,11 +43,10 @@ struct StopException <: Exception end
stop()
Call `Flux.stop()` in a callback to indicate when a callback condition is met.
This would trigger the train loop to stop and exit.
This will trigger the train loop to stop and exit.
# Examples
```julia
# Example callback:
cb = function ()
accuracy() > 0.9 && Flux.stop()
end
@ -58,19 +59,18 @@ end
"""
train!(loss, params, data, opt; cb)
For each datapoint `d` in `data` computes the gradient of `loss(d...)` through
backpropagation and calls the optimizer `opt`.
For each datapoint `d` in `data` compute the gradient of `loss(d...)` through
backpropagation and call the optimizer `opt`.
In case datapoints `d` are of numeric array type, assumes no splatting is needed
and computes the gradient of `loss(d)`.
In case datapoints `d` are of numeric array type, assume no splatting is needed
and compute the gradient of `loss(d)`.
Takes a callback as keyword argument `cb`. For example, this will print "training"
every 10 seconds:
A callback is given with the keyword argument `cb`. For example, this will print
"training" every 10 seconds (using [`Flux.throttle`](@ref)):
train!(loss, params, data, opt,
cb = throttle(() -> println("training"), 10))
train!(loss, params, data, opt, cb = throttle(() -> println("training"), 10))
The callback can call `Flux.stop()` to interrupt the training loop.
The callback can call [`Flux.stop`](@ref) to interrupt the training loop.
Multiple optimisers and callbacks can be passed to `opt` and `cb` as arrays.
"""
@ -106,11 +106,12 @@ end
Run `body` `N` times. Mainly useful for quickly doing multiple epochs of
training in a REPL.
```julia
julia> @epochs 2 println("hello")
INFO: Epoch 1
# Examples
```jldoctest
julia> Flux.@epochs 2 println("hello")
[ Info: Epoch 1
hello
INFO: Epoch 2
[ Info: Epoch 2
hello
```
"""

View File

@ -1,10 +1,40 @@
# Arrays
nfan() = 1, 1 #fan_in, fan_out
nfan(n) = 1, n #A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out #In case of Dense kernels: arranged as matrices
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) #In case of convolution kernels
nfan() = 1, 1 # fan_in, fan_out
nfan(n) = 1, n # A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out # In case of Dense kernels: arranged as matrices
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) # In case of convolution kernels
"""
glorot_uniform(dims...)
Return an `Array` of size `dims` containing random variables taken from a uniform
distribution in the interval ``[-x, x]``, where `x = sqrt(24 / sum(dims)) / 2`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_uniform(2, 3)
2×3 Array{Float32,2}:
0.601094 -0.57414 -0.814925
0.900868 0.805994 0.057514
```
"""
glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...)))
"""
glorot_normal(dims...)
Return an `Array` of size `dims` containing random variables taken from a normal
distribution with mean 0 and standard deviation `sqrt(2 / sum(dims))`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_normal(3, 2)
3×2 Array{Float32,2}:
0.429505 -0.0852891
0.523935 0.371009
-0.223261 0.188052
```
"""
glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...)))
ones(T::Type, dims...) = Base.ones(T, dims...)
@ -13,9 +43,81 @@ zeros(T::Type, dims...) = Base.zeros(T, dims...)
ones(dims...) = Base.ones(Float32, dims...)
zeros(dims...) = Base.zeros(Float32, dims...)
"""
unsqueeze(xs, dim)
Return `xs` reshaped into an `Array` one dimensionality higher than `xs`,
where `dim` indicates in which dimension `xs` is extended.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.unsqueeze(xs, 1)
1×3 Array{Array{Int64,1},2}:
[1, 2] [3, 4] [5, 6]
julia> Flux.unsqueeze([1 2; 3 4], 2)
2×1×2 Array{Int64,3}:
[:, :, 1] =
1
3
[:, :, 2] =
2
4
```
"""
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
"""
stack(xs, dim)
Concatenate the given `Array` of `Array`s `xs` into a single `Array` along the
given dimension `dim`.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.stack(xs, 1)
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> cat(xs, dims=1)
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
```
"""
stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim)
"""
unstack(xs, dim)
Unroll the given `xs` into an `Array` of `Array`s along the given dimension `dim`.
# Examples
```jldoctest
julia> Flux.unstack([1 3 5 7; 2 4 6 8], 2)
4-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
[7, 8]
```
"""
unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
"""
@ -23,9 +125,16 @@ unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
Split `xs` into `n` parts.
```julia
julia> chunk(1:10, 3)
3-element Array{Array{Int64,1},1}:
# Examples
```jldoctest
julia> Flux.chunk(1:10, 3)
3-element Array{UnitRange{Int64},1}:
1:4
5:8
9:10
julia> Flux.chunk(collect(1:10), 3)
3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:
[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10]
@ -40,11 +149,12 @@ batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i)
Count the number of times that each element of `xs` appears.
```julia
julia> frequencies(['a','b','b'])
# Examples
```jldoctest
julia> Flux.frequencies(['a','b','b'])
Dict{Char,Int64} with 2 entries:
'b' => 2
'a' => 1
'b' => 2
```
"""
function frequencies(xs)
@ -64,8 +174,9 @@ squeezebatch(x) = reshape(x, head(size(x)))
Batch the arrays in `xs` into a single array.
```julia
julia> batch([[1,2,3],[4,5,6]])
# Examples
```jldoctest
julia> Flux.batch([[1,2,3],[4,5,6]])
3×2 Array{Int64,2}:
1 4
2 5
@ -82,6 +193,25 @@ function batch(xs)
return data
end
"""
Return the given sequence padded with `p` up to a maximum length of `n`.
# Examples
```jldoctest
julia> rpad([1, 2], 4, 0)
4-element Array{Int64,1}:
1
2
0
0
julia> rpad([1, 2, 3], 2, 0)
3-element Array{Int64,1}:
1
2
3
```
"""
Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))]
"""
@ -90,8 +220,9 @@ Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))
Take a list of `N` sequences, and turn them into a single sequence where each
item is a batch of `N`. Short sequences will be padded by `pad`.
```julia
julia> batchseq([[1, 2, 3], [4, 5]], 0)
# Examples
```jldoctest
julia> Flux.batchseq([[1, 2, 3], [4, 5]], 0)
3-element Array{Array{Int64,1},1}:
[1, 4]
[2, 5]
@ -115,6 +246,10 @@ function _restructure(m, xs)
end
end
@adjoint function _restructure(m, xs)
_restructure(m, xs), dm -> (nothing,destructure(dm)[1])
end
"""
destructure(m)
@ -148,11 +283,15 @@ end
# Other
"""
Returns a function that when invoked, will only be triggered at most once
during `timeout` seconds. Normally, the throttled function will run
as much as it can, without ever going more than once per `wait` duration;
but if you'd like to disable the execution on the leading edge, pass
`leading=false`. To enable execution on the trailing edge, ditto.
throttle(f, timeout; leading=true, trailing=false)
Return a function that when invoked, will only be triggered at most once
during `timeout` seconds.
Normally, the throttled function will run as much as it can, without ever
going more than once per `wait` duration; but if you'd like to disable the
execution on the leading edge, pass `leading=false`. To enable execution on
the trailing edge, pass `trailing=true`.
"""
function throttle(f, timeout; leading=true, trailing=false)
cooldown = true

106
src/zeros.jl Normal file
View File

@ -0,0 +1,106 @@
import Base: +, -, *, reshape, size
import Base.Broadcast: broadcasted, Broadcasted, BroadcastStyle
"""
Zeros()
Zeros(size...)
Zeros(Type, size...)
Acts as a stand-in for an array of zeros that can be
used during training which is ignored by the optimisers.
Useful to turn bias off for a forward pass of a layer.
## Examples
```julia
julia> Flux.Zeros(3,3)
3×3 Flux.Zeros{Bool,2}:
false false false
false false false
false false false
julia> Flux.Zeros(Float32, 3,3)
3×3 Flux.Zeros{Float32,2}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
julia> rand(3,3) .+ Flux.Zeros()
3×3 Array{Float64,2}:
0.198739 0.490459 0.785386
0.779074 0.39986 0.66383
0.854981 0.447292 0.314497
julia> bias_less_conv = Conv((2,2), 1=>3, bias = Flux.Zeros())
Conv((2, 2), 1=>3)
```
"""
struct Zeros{T,N} <: AbstractArray{T,N}
size::Tuple
end
Zeros(::Type{T}, sz...) where T = Zeros{T,length(sz)}(sz)
Zeros(sz::Integer...) = Zeros(Bool, sz...)
Base.size(xs::Zeros) = xs.size
Base.axes(xs::Zeros) = Base.OneTo.(size(xs))
Base.IndexStyle(::Type{<:Zeros}) = IndexLinear()
Base.getindex(xs::Zeros{T,N}, I::Int) where {T,N} = zero(T)
Base.getindex(xs::Zeros{T,N}, inds::Union{Base.OneTo, Base.UnitRange}) where {T,N} =
Zeros(T, length(inds))
Base.collect(xs::Zeros{T,N}) where {T,N} = fill(zero(T), size(xs))
@adjoint reshape(xs::Zeros{T}, dims...) where T =
reshape(xs, dims...), _ -> nothing
# Define basic ops
for f in (:+, :-)
@eval @inline function $f(a::Union{AbstractArray{<:Number}, Zeros}, b::Zeros)
@assert size(a) == size(b) throw(DimensionMismatch("dimensions must match"))
a
end
end
+(a::Zeros, b::AbstractArray) = b + a
-(a::Zeros, b::AbstractArray) = -b + a
Base.copy(xs::Zeros{T,N}) where {T,N} = xs
# Define broadcasting behaviour
for op in (:+, :-)
@eval function broadcasted(::typeof($op), a::AbstractArray, b::Zeros)
bs = Broadcast.broadcast_shape(size(a), size(b))
size(a) == bs && return a
sz = similar(a, bs)
sz .= a
end
end
broadcasted(::typeof(+), a::Zeros, b::AbstractArray) = broadcasted(+, b, a)
broadcasted(::typeof(-), a::Zeros, b::AbstractArray) = broadcasted(+, -b, a)
function broadcasted(::typeof(*), a::AbstractArray, b::Zeros)
Zeros(Broadcast.broadcast_shape(size(a), size(b))...)
end
broadcasted(::typeof(*), a::Zeros, b::AbstractArray) = broadcasted(*, b, a)
for op in (:+, :-, :*)
@eval broadcasted(::typeof($op), a::Zeros, b::Zeros) = Zeros(Broadcast.broadcast_shape(size(a), size(b))...)
end
# Some opportunities to avoid scalar indexing, intermediaries
# Since it replicates a little of what we expect Base to do,
# it should be possible to remove in the future, but for now,
# these help with performance.
broadcasted(::typeof(+), a::AbstractArray, b::Zeros{T,0}) where T = a
broadcasted(::typeof(+), a::Zeros{T,0}, b::AbstractArray) where T = b
broadcasted(::typeof(-), a::AbstractArray, b::Zeros{T,0}) where T = a
broadcasted(::typeof(-), a::Zeros{T,0}, b::AbstractArray) where T = -b
broadcasted(::typeof(*), a::AbstractArray, b::Zeros{T,0}) where T = zero(a)
broadcasted(::typeof(*), a::Zeros{T,0}, b::AbstractArray) where T = zero(b)
broadcasted(::typeof(/), a::Zeros{T,0}, b::AbstractArray) where T = zero(b)

View File

@ -69,6 +69,7 @@ if CuArrays.has_cudnn()
@info "Testing Flux/CUDNN"
include("cudnn.jl")
include("curnn.jl")
include("layers.jl")
else
@warn "CUDNN unavailable, not testing GPU DNN support"
end

98
test/cuda/layers.jl Normal file
View File

@ -0,0 +1,98 @@
# Test layers and data/model movements on and off the GPU
# Add tests for layers and their gradients on the GPU
# Most of the forward passes should be fine being applied
# to bitstype objects, but this gives higher coverage for our use-cases
# Check that getting the gradients does not throw
# generic movement tests
@testset "Basic GPU Movement" begin
@test gradient(x -> sum(gpu(x)), rand(3,3)) isa Tuple
@test gradient(x -> sum(cpu(x)), gpu(rand(3,3))) isa Tuple
end
# TODO: These layers get into scalar indexing
# `AlphaDropout` throws a compilation error on GPUs,
# whereas, the rest are scalar indexing issues.
const BROKEN_LAYERS = [DepthwiseConv,
AlphaDropout,
InstanceNorm,
GroupNorm]
function gradtest(name::String, layers::Vector, xs = nothing, args...)
isnothing(xs) && error("Missing input to test the layers against.")
@testset "$name GPU grad tests" begin
for layer in layers
@testset "$layer GPU grad test" begin
l = gpu(layer(args...))
xs = gpu(xs)
if any(x -> isa(l, x), BROKEN_LAYERS)
ps = Flux.params(l)
@test_broken gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
else
ps = Flux.params(l)
@test gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
gs = gradient(() -> sum(l(xs)), ps)
# Handle pooling layers
if !isempty(ps)
@test gs[first(ps)] isa Flux.CuArrays.CuArray
end
end
end
end
end
end
# Repeats from Conv, CrossCor
r = rand(Float32, 28, 28, 1, 1)
conv_layers = [Conv, ConvTranspose, CrossCor, DepthwiseConv]
gradtest("Conv", conv_layers, r, (2,2), 1=>3)
pooling_layers = [MaxPool, MeanPool]
gradtest("Pooling", pooling_layers, r, (2,2))
dropout_layers = [Dropout, AlphaDropout]
gradtest("Dropout", dropout_layers, r, 0.5f0)
norm_layers = [LayerNorm, BatchNorm]
gradtest("Normalising", norm_layers, rand(Float32, 28,28,3,1), 1)
instancenorm = [InstanceNorm]
gradtest("InstanceNorm", instancenorm, r, 1)
groupnorm = [GroupNorm]
gradtest("GroupNorm", groupnorm, rand(Float32, 28,28,3,1), 3, 1)
const stateless_layers = [Flux.mse,
Flux.crossentropy,
Flux.logitcrossentropy,
Flux.normalise]
const stateless_layers_broadcasted = [Flux.binarycrossentropy,
Flux.logitbinarycrossentropy]
function stateless_gradtest(f, args...)
@test gradient((args...) -> sum(f(args...)), args...)[1] isa CuArray
end
function stateless_gradtest_broadcasted(f, args...)
@test gradient((args...) -> sum(f.(args...)), args...)[1] isa CuArray
end
@testset "Stateless GPU grad tests" begin
x = gpu(rand(3,3))
y = gpu(rand(3,3))
for layer in stateless_layers
if layer == Flux.normalise
stateless_gradtest(layer, x)
else
stateless_gradtest(layer, x, y)
end
end
for layer in stateless_layers_broadcasted
stateless_gradtest_broadcasted(layer, x, y)
end
end

View File

@ -3,20 +3,34 @@
Y = [1:5;]
d = DataLoader(X, batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 3
@test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4]
@test batches[3] == X[:,5:5]
d = DataLoader(X, batchsize=2, partial=false)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 2
@test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4]
d = DataLoader(X, Y, batchsize=2)
d = DataLoader((X,), batchsize=2, partial=false)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X)}
@test length(batches) == 2
@test batches[1] == (X[:,1:2],)
@test batches[2] == (X[:,3:4],)
d = DataLoader((X, Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X), typeof(Y)}
@test length(batches) == 3
@test length(batches[1]) == 2
@test length(batches[2]) == 2
@ -28,6 +42,22 @@
@test batches[3][1] == X[:,5:5]
@test batches[3][2] == Y[5:5]
# test with NamedTuple
d = DataLoader((x=X, y=Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == NamedTuple{(:x, :y), Tuple{typeof(X), typeof(Y)}}
@test length(batches) == 3
@test length(batches[1]) == 2
@test length(batches[2]) == 2
@test length(batches[3]) == 2
@test batches[1][1] == batches[1].x == X[:,1:2]
@test batches[1][2] == batches[1].y == Y[1:2]
@test batches[2][1] == batches[2].x == X[:,3:4]
@test batches[2][2] == batches[2].y == Y[3:4]
@test batches[3][1] == batches[3].x == X[:,5:5]
@test batches[3][2] == batches[3].y == Y[5:5]
# test interaction with `train!`
θ = ones(2)
X = zeros(2, 10)
@ -41,7 +71,7 @@
X = ones(2, 10)
Y = fill(2, 10)
loss(x, y) = sum((y - x'*θ).^2)
d = DataLoader(X, Y)
d = DataLoader((X, Y))
Flux.train!(loss, [θ], ncycle(d, 10), Descent(0.1))
@test norm(θ .- 1) < 1e-10
end
@ -76,8 +106,9 @@ end
@test size(Iris.labels()) == (150,)
end
@testset "Housing" begin
@test Housing.features() isa Matrix
@test Housing.features() isa Matrix # test broken due to SSL certifate expiration problem
@test size(Housing.features()) == (506, 13)
@test Housing.targets() isa Array{Float64}

View File

@ -28,6 +28,14 @@ import Flux: activations
end
@testset "Dense" begin
@testset "constructors" begin
@test size(Dense(10, 100).W) == (100, 10)
@test Dense(rand(100,10), rand(10)).σ == identity
@test_throws MethodError Dense(10, 10.5)
@test_throws MethodError Dense(10, 10.5, tanh)
end
@test length(Dense(10, 5)(randn(10))) == 5
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
@ -37,7 +45,6 @@ import Flux: activations
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
end
@testset "Diagonal" begin

View File

@ -4,6 +4,10 @@ using Flux: gradient
@testset "Pooling" begin
x = randn(Float32, 10, 10, 3, 2)
gmp = GlobalMaxPool()
@test size(gmp(x)) == (1, 1, 3, 2)
gmp = GlobalMeanPool()
@test size(gmp(x)) == (1, 1, 3, 2)
mp = MaxPool((2, 2))
@test mp(x) == maxpool(x, PoolDims(x, 2))
mp = MeanPool((2, 2))
@ -21,6 +25,35 @@ end
Dense(288, 10), softmax)
@test size(m(r)) == (10, 5)
# Test bias switch
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3))
ip = zeros(Float32, 28,28,1,1)
op = bias(ip)
@test sum(op) == prod(size(op))
bias = Conv((2,2), 1=>3, bias = Flux.Zeros())
op = bias(ip)
@test sum(op) === 0.f0
gs = gradient(() -> sum(bias(ip)), Flux.params(bias))
@test gs[bias.bias] == nothing
# Train w/o bias and make sure no convergence happens
# when only bias can be converged
bias = Conv((2, 2), 1=>3, bias = Flux.Zeros());
ip = zeros(Float32, 28,28,1,1)
op = zeros(Float32, 27,27,3,1) .+ 2.f0
opt = Descent()
for _ = 1:10^3
gs = gradient(params(bias)) do
Flux.mse(bias(ip), op)
end
Flux.Optimise.update!(opt, params(bias), gs)
end
@test Flux.mse(bias(ip), op) 4.f0
end
@testset "asymmetric padding" begin
@ -158,4 +191,28 @@ end
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MeanPool((2, 2); stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
end
end
@testset "$ltype SamePad kernelsize $k" for ltype in (Conv, ConvTranspose, DepthwiseConv, CrossCor), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, 1=>1, pad=SamePad())
@test size(l(data)) == size(data)
l = ltype(k, 1=>1, pad=SamePad(), dilation = k 2)
@test size(l(data)) == size(data)
stride = 3
l = ltype(k, 1=>1, pad=SamePad(), stride = stride)
if ltype == ConvTranspose
@test size(l(data))[1:end-2] == stride .* size(data)[1:end-2] .- stride .+ 1
else
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ stride)
end
end
@testset "$ltype SamePad windowsize $k" for ltype in (MeanPool, MaxPool), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, pad=SamePad())
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ k)
end

View File

@ -1,9 +1,26 @@
using Test
using Flux: onehotbatch, mse, crossentropy, logitcrossentropy,
σ, binarycrossentropy, logitbinarycrossentropy
σ, binarycrossentropy, logitbinarycrossentropy, flatten,
xlogx, xlogy
const ϵ = 1e-7
@testset "xlogx & xlogy" begin
@test iszero(xlogx(0))
@test isnan(xlogx(NaN))
@test xlogx(2) 2.0 * log(2.0)
@inferred xlogx(2)
@inferred xlogx(0)
@test iszero(xlogy(0, 1))
@test isnan(xlogy(NaN, 1))
@test isnan(xlogy(1, NaN))
@test isnan(xlogy(NaN, NaN))
@test xlogy(2, 3) 2.0 * log(3.0)
@inferred xlogy(2, 3)
@inferred xlogy(0, 1)
end
@testset "losses" begin
# First, regression-style y's
y = [1, 1, 0, 0]
@ -12,15 +29,15 @@ const ϵ = 1e-7
@testset "mse" begin
@test mse(ŷ, y) (.1^2 + .9^2)/2
end
@testset "mae" begin
@test Flux.mae(ŷ, y) 1/2
end
@testset "huber_loss" begin
@test Flux.huber_loss(ŷ, y) 0.20500000000000002
end
end
y = [123.0,456.0,789.0]
ŷ = [345.0,332.0,789.0]
@testset "msle" begin
@ -35,6 +52,7 @@ const ϵ = 1e-7
lossvalue = 1.203972804325936
@testset "crossentropy" begin
@test crossentropy([0.1,0.0,0.9], [0.1,0.0,0.9]) crossentropy([0.1,0.9], [0.1,0.9])
@test crossentropy(ŷ, y) lossvalue
end
@ -63,46 +81,47 @@ const ϵ = 1e-7
@testset "logitbinarycrossentropy" begin
@test logitbinarycrossentropy.(logŷ, y) binarycrossentropy.(σ.(logŷ), y; ϵ=0)
end
y = [1 2 3]
ŷ = [4.0 5.0 6.0]
@testset "kldivergence" begin
@test Flux.kldivergence([0.1,0.0,0.9], [0.1,0.0,0.9]) Flux.kldivergence([0.1,0.9], [0.1,0.9])
@test Flux.kldivergence(ŷ, y) -1.7661057888493457
@test Flux.kldivergence(y, y) 0
@test Flux.kldivergence(y, y) 0
end
y = [1 2 3 4]
ŷ = [5.0 6.0 7.0 8.0]
@testset "hinge" begin
@test Flux.hinge(ŷ, y) 0
@test Flux.hinge(y, 0.5 .* y) 0.125
end
@testset "squared_hinge" begin
@test Flux.squared_hinge(ŷ, y) 0
@test Flux.squared_hinge(y, 0.5 .* y) 0.0625
end
y = [0.1 0.2 0.3]
ŷ = [0.4 0.5 0.6]
@testset "poisson" begin
@test Flux.poisson(ŷ, y) 0.6278353988097339
@test Flux.poisson(y, y) 0.5044459776946685
end
y = [1.0 0.5 0.3 2.4]
ŷ = [0 1.4 0.5 1.2]
@testset "dice_coeff_loss" begin
@test Flux.dice_coeff_loss(ŷ, y) 0.2799999999999999
@test Flux.dice_coeff_loss(y, y) 0.0
end
@testset "tversky_loss" begin
@test Flux.tversky_loss(ŷ, y) -0.06772009029345383
@test Flux.tversky_loss(ŷ, y, β = 0.8) -0.09490740740740744
@test Flux.tversky_loss(y, y) -0.5576923076923075
end
@testset "no spurious promotions" begin
for T in (Float32, Float64)
y = rand(T, 2)
@ -116,3 +135,10 @@ const ϵ = 1e-7
end
end
end
@testset "helpers" begin
@testset "flatten" begin
x = randn(Float32, 10, 10, 3, 2)
@test size(flatten(x)) == (300, 2)
end
end

View File

@ -57,35 +57,57 @@ end
end
@testset "ExpDecay" begin
w = randn(10, 10)
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
w1 = randn(10,10)
loss(x) = Flux.mse(w*x, w1*x)
flag = 1
decay_steps = []
for t = 1:10^5
prev_eta = o.eta
θ = Params([w1])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
prev_grad = collect(θ̄[w1])
delta = Optimise.apply!(o, w1, θ̄[w1])
w1 .-= delta
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
array = fill(o.eta, size(prev_grad))
if array .* prev_grad != delta
flag = 0
end
@testset "Sanity Check" begin
o = ExpDecay(0.2, 0.5, 1, 1e-3)
p = [0.0]
steps = 1:8
eta_expected = @. max(o.eta * 0.5 ^ steps, o.clip)
eta_actual = [Optimise.apply!(o, p, [1.0])[1] for _ in steps]
@test eta_actual == eta_expected
end
w = randn(10, 10)
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
w1 = randn(10,10)
loss(x) = Flux.mse(w*x, w1*x)
flag = 1
decay_steps = []
for t = 1:10^5
prev_eta = o.eta
θ = Params([w1])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
prev_grad = collect(θ̄[w1])
delta = Optimise.apply!(o, w1, θ̄[w1])
w1 .-= delta
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value eventually.
ground_truth = []
for i in 1:11
push!(ground_truth, 1000*i) # Expected decay steps for this example.
array = fill(o.eta, size(prev_grad))
if array .* prev_grad != delta
flag = 0
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end
@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value (1e-4) after 4000 steps (decay by 0.1 every 1000 steps starting at 0.1).
ground_truth = []
for i in 1:4
push!(ground_truth, 1000*i) # Expected decay steps for this example.
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end
@testset "Clipping" begin
w = randn(10, 10)
loss(x) = sum(w * x)
θ = Params([w])
x = 1000 * randn(10)
= gradient(() -> loss(x), θ)[w]
w̄_value = Optimise.apply!(ClipValue(1.0), w, copy())
@test all(w̄_value .<= 1)
w̄_norm = Optimise.apply!(ClipNorm(1.0), w, copy())
@test norm(w̄_norm) <= 1
end

View File

@ -2,48 +2,45 @@ using Flux
using Flux.Data
using Test
using Random, Statistics, LinearAlgebra
using Documenter
using IterTools: ncycle
Random.seed!(0)
@testset "Flux" begin
@testset "Utils" begin
include("utils.jl")
end
@testset "Utils" begin
include("utils.jl")
end
@testset "Onehot" begin
include("onehot.jl")
end
@testset "Optimise" begin
include("optimise.jl")
end
@testset "Data" begin
include("data.jl")
end
@testset "Layers" begin
include("layers/basic.jl")
include("layers/normalisation.jl")
include("layers/stateless.jl")
include("layers/conv.jl")
end
@testset "CUDA" begin
if Flux.use_cuda[]
include("cuda/cuda.jl")
else
@warn "CUDA unavailable, not testing GPU support"
end
@testset "Onehot" begin
include("onehot.jl")
end
@testset "Optimise" begin
include("optimise.jl")
end
@testset "Data" begin
include("data.jl")
end
@testset "Layers" begin
include("layers/basic.jl")
include("layers/normalisation.jl")
include("layers/stateless.jl")
include("layers/conv.jl")
end
@testset "CUDA" begin
if Flux.use_cuda[]
include("cuda/cuda.jl")
else
@warn "CUDA unavailable, not testing GPU support"
end
end
@static if VERSION >= v"1.4"
using Documenter
@testset "Docs" begin
if VERSION >= v"1.2"
doctest(Flux)
end
DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true)
doctest(Flux)
end
end # testset Flux
end