2018-08-20 12:08:04 +00:00
|
|
|
|
using .CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, libcudnn_handle,
|
2018-01-26 18:29:29 +00:00
|
|
|
|
cudnnDataType, TensorDesc, FilterDesc
|
2018-01-24 18:45:24 +00:00
|
|
|
|
|
2018-08-20 12:08:04 +00:00
|
|
|
|
using LinearAlgebra
|
2018-08-15 10:16:12 +00:00
|
|
|
|
|
2018-01-24 18:45:24 +00:00
|
|
|
|
mutable struct DropoutDesc
|
2018-06-12 17:09:18 +00:00
|
|
|
|
ptr::Ptr{Nothing}
|
2018-01-24 18:45:24 +00:00
|
|
|
|
states::CuVector{UInt8}
|
|
|
|
|
end
|
|
|
|
|
|
2018-06-12 17:09:18 +00:00
|
|
|
|
Base.unsafe_convert(::Type{Ptr{Nothing}}, dd::DropoutDesc) = dd.ptr
|
2018-01-24 18:45:24 +00:00
|
|
|
|
|
|
|
|
|
function DropoutDesc(ρ::Real; seed::Integer=0)
|
|
|
|
|
d = [C_NULL]
|
|
|
|
|
s = Csize_t[0]
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnCreateDropoutDescriptor,libcudnn), cudnnStatus_t, (Ptr{Ptr{Nothing}},), d)
|
|
|
|
|
@check ccall((:cudnnDropoutGetStatesSize,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Csize_t}),libcudnn_handle[],s)
|
2018-01-24 18:45:24 +00:00
|
|
|
|
states = CuArray{UInt8}(s[]) # TODO: can we drop this when ρ=0?
|
|
|
|
|
desc = DropoutDesc(d[], states)
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnSetDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Nothing},Cfloat,Ptr{Nothing},Csize_t,Culonglong),
|
2018-01-24 18:45:24 +00:00
|
|
|
|
desc,libcudnn_handle[],ρ,states,length(states),seed)
|
|
|
|
|
finalizer(desc, x ->
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnDestroyDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x))
|
2018-01-24 18:45:24 +00:00
|
|
|
|
return desc
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
const RNN_RELU = 0 # Stock RNN with ReLu activation
|
|
|
|
|
const RNN_TANH = 1 # Stock RNN with tanh activation
|
|
|
|
|
const LSTM = 2 # LSTM with no peephole connections
|
|
|
|
|
const GRU = 3 # Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1)
|
|
|
|
|
|
|
|
|
|
const LINEAR_INPUT = 0
|
|
|
|
|
const SKIP_INPUT = 1
|
|
|
|
|
|
|
|
|
|
const UNIDIRECTIONAL = 0
|
|
|
|
|
const BIDIRECTIONAL = 1
|
|
|
|
|
|
|
|
|
|
const RNN_ALGO_STANDARD = 0
|
|
|
|
|
const RNN_ALGO_PERSIST_STATIC = 1
|
|
|
|
|
const RNN_ALGO_PERSIST_DYNAMIC = 2
|
|
|
|
|
|
2018-01-30 13:12:33 +00:00
|
|
|
|
# param layout:
|
|
|
|
|
# RNN: [weight, bias] × [input, hidden]
|
|
|
|
|
# GRU: [weight, bias] × [input, hidden] × [reset, update, newmem]
|
|
|
|
|
# LSTM: [weight, bias] × [input, hidden] × [input, forget, newmem, output]
|
|
|
|
|
|
2018-01-31 16:56:27 +00:00
|
|
|
|
function params(w::CuVector, input, hidden, n = 1)
|
|
|
|
|
slice(offset, shape) = reshape(w[offset+(1:prod(shape))], shape)
|
|
|
|
|
wx = slice(0, (input, hidden*n))
|
|
|
|
|
wh = slice(length(wx), (hidden, hidden*n))
|
|
|
|
|
bias = w[length(wx)+length(wh) + (1:hidden*n)]
|
|
|
|
|
(wx, wh), bias
|
2018-01-30 13:12:33 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
mutable struct RNNDesc{T}
|
|
|
|
|
mode::Int
|
2018-01-26 15:28:39 +00:00
|
|
|
|
input::Int
|
|
|
|
|
hidden::Int
|
2018-01-30 13:12:33 +00:00
|
|
|
|
params::CuVector{T}
|
2018-01-31 16:56:27 +00:00
|
|
|
|
weights::NTuple{2,CuMatrix{T}}
|
|
|
|
|
bias::CuVector{T}
|
2018-06-12 17:09:18 +00:00
|
|
|
|
ptr::Ptr{Nothing}
|
2018-01-24 18:45:24 +00:00
|
|
|
|
end
|
|
|
|
|
|
2018-06-12 17:09:18 +00:00
|
|
|
|
Base.unsafe_convert(::Type{Ptr{Nothing}}, d::RNNDesc) = d.ptr
|
2018-01-24 18:45:24 +00:00
|
|
|
|
|
2018-01-30 13:12:33 +00:00
|
|
|
|
function rnnParamSize(T, r, input)
|
|
|
|
|
size = Csize_t[0]
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Ptr{Nothing},Ptr{Csize_t},Cint),
|
2018-01-30 13:12:33 +00:00
|
|
|
|
libcudnn_handle[], r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T))
|
|
|
|
|
return Int(size[])÷sizeof(T)
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 02:37:55 +00:00
|
|
|
|
ngates(mode) = [1, 1, 4, 3][mode+1]
|
|
|
|
|
ngates(r::RNNDesc) = ngates(r.mode)
|
|
|
|
|
|
2018-01-30 13:12:33 +00:00
|
|
|
|
function RNNDesc{T}(mode::Int, input::Int, hidden::Int; layers = 1) where T
|
2018-01-24 18:45:24 +00:00
|
|
|
|
d = [C_NULL]
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Nothing}},),d)
|
2018-01-24 18:45:24 +00:00
|
|
|
|
|
2018-01-26 12:16:34 +00:00
|
|
|
|
dropoutDesc = DropoutDesc(0)
|
2018-01-24 18:45:24 +00:00
|
|
|
|
inputMode = LINEAR_INPUT
|
|
|
|
|
direction = UNIDIRECTIONAL
|
|
|
|
|
algo = RNN_ALGO_STANDARD
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Cint,Ptr{Nothing},Cint,Cint,Cint,Cint,Cint),
|
2018-01-30 13:12:33 +00:00
|
|
|
|
libcudnn_handle[],d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T))
|
|
|
|
|
|
2018-08-03 14:19:10 +00:00
|
|
|
|
w = cuzeros(T, rnnParamSize(T, d[], input))
|
2018-02-02 17:48:08 +00:00
|
|
|
|
# TODO: avoid reserve allocation here
|
2018-02-08 10:24:59 +00:00
|
|
|
|
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates(mode))..., d[])
|
2018-01-30 13:12:33 +00:00
|
|
|
|
finalizer(rd, x ->
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x))
|
2018-01-24 18:45:24 +00:00
|
|
|
|
return rd
|
|
|
|
|
end
|
2018-01-26 12:16:34 +00:00
|
|
|
|
|
2018-01-30 13:12:33 +00:00
|
|
|
|
function rnnWorkspaceSize(r::RNNDesc, seqlen, xdesc)
|
2018-01-26 15:28:39 +00:00
|
|
|
|
size = Csize_t[0]
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Ptr{Ptr{Nothing}},Ptr{Csize_t}),
|
2018-01-30 13:12:33 +00:00
|
|
|
|
libcudnn_handle[], r, seqlen, xdesc, size)
|
2018-01-26 15:28:39 +00:00
|
|
|
|
return Int(size[])
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-06 18:56:17 +00:00
|
|
|
|
const workspace = [CuVector{UInt8}(1)]
|
|
|
|
|
|
|
|
|
|
getworkspace(bytes) =
|
|
|
|
|
length(workspace[]) ≥ bytes ?
|
|
|
|
|
workspace[] :
|
|
|
|
|
(workspace[] = CuVector{UInt8}(bytes))
|
|
|
|
|
|
|
|
|
|
getworkspace(r::RNNDesc, seqlen, xdesc) =
|
2018-02-08 00:49:39 +00:00
|
|
|
|
getworkspace(rnnWorkspaceSize(r, seqlen, xdesc))
|
2018-02-06 18:56:17 +00:00
|
|
|
|
|
2018-01-30 13:12:33 +00:00
|
|
|
|
function rnnTrainingReserveSize(r::RNNDesc, seqlen, xdesc)
|
2018-01-26 15:35:14 +00:00
|
|
|
|
size = Csize_t[0]
|
2018-06-12 17:09:18 +00:00
|
|
|
|
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Nothing}, Ptr{Nothing}, Cint, Ptr{Ptr{Nothing}}, Ptr{Csize_t}),
|
2018-01-30 13:12:33 +00:00
|
|
|
|
libcudnn_handle[], r, seqlen, xdesc, size)
|
2018-01-26 15:35:14 +00:00
|
|
|
|
return Int(size[])
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-06 18:56:17 +00:00
|
|
|
|
function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
2018-02-08 10:24:59 +00:00
|
|
|
|
workspace, reserve=nothing) where T
|
|
|
|
|
if reserve == nothing
|
2018-02-02 17:48:08 +00:00
|
|
|
|
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
|
2018-06-12 17:09:18 +00:00
|
|
|
|
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
|
|
|
|
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Csize_t),
|
2018-02-02 17:48:08 +00:00
|
|
|
|
libcudnn_handle[], rnn, seqlen,
|
|
|
|
|
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
|
|
|
|
workspace, length(workspace))
|
|
|
|
|
else
|
|
|
|
|
@check ccall((:cudnnRNNForwardTraining, libcudnn), cudnnStatus_t,
|
2018-06-12 17:09:18 +00:00
|
|
|
|
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
|
|
|
|
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
2018-02-02 17:48:08 +00:00
|
|
|
|
libcudnn_handle[], rnn, seqlen,
|
|
|
|
|
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
|
|
|
|
workspace, length(workspace), reserve, length(reserve))
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-06 18:56:17 +00:00
|
|
|
|
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))]
|
|
|
|
|
|
2018-06-12 17:09:18 +00:00
|
|
|
|
hDesc(h::Nothing) = C_NULL, C_NULL
|
2018-02-08 00:49:39 +00:00
|
|
|
|
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing))
|
2018-02-06 13:29:57 +00:00
|
|
|
|
function hDesc(h::CuArray)
|
|
|
|
|
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 01:06:08 +00:00
|
|
|
|
# TODO: can we just manipulate strides here?
|
|
|
|
|
# TODO: should use repmat, but this isn't implemented.
|
|
|
|
|
hBatch(x::AbstractVector, h::CuVector) = h
|
|
|
|
|
hBatch(x::AbstractMatrix, h::CuVector) = h .* cuones(1, size(x, 2))
|
|
|
|
|
hBatch(x::AbstractMatrix, h::CuMatrix) = h .* cuones(1, size(h,2) == 1 ? size(x,2) : 1)
|
|
|
|
|
|
2018-02-08 10:24:59 +00:00
|
|
|
|
function forward(rnn::RNNDesc{T}, x::CuArray{T}, h_::CuArray{T}, c_ = nothing, train = Val{false}) where T
|
2018-02-08 01:06:08 +00:00
|
|
|
|
h = hBatch(x, h_)
|
|
|
|
|
c = c_ == nothing ? nothing : hBatch(x, c_)
|
2018-01-30 13:12:33 +00:00
|
|
|
|
@assert size(x, 1) == rnn.input
|
|
|
|
|
@assert size(h, 1) == rnn.hidden
|
|
|
|
|
@assert size(x, 2) == size(h, 2)
|
|
|
|
|
seqLength = 1
|
2018-02-06 18:56:17 +00:00
|
|
|
|
xdesc = xDesc(x)
|
2018-01-30 13:12:33 +00:00
|
|
|
|
y = x isa AbstractVector ? similar(x, rnn.hidden) : similar(x, rnn.hidden, size(x, 2))
|
2018-02-08 02:37:55 +00:00
|
|
|
|
ho = similar(h)
|
2018-02-06 18:56:17 +00:00
|
|
|
|
ydesc = xDesc(y)
|
|
|
|
|
workspace = getworkspace(rnn, seqLength, xdesc)
|
2018-02-08 10:24:59 +00:00
|
|
|
|
reserve = train == Val{true} ?
|
|
|
|
|
CuVector{UInt8}(rnnTrainingReserveSize(rnn, seqLength, xdesc)) :
|
|
|
|
|
nothing
|
2018-02-06 18:56:17 +00:00
|
|
|
|
co = c == nothing ? c : similar(c)
|
|
|
|
|
cudnnRNNForward(rnn, seqLength,
|
2018-02-02 17:48:08 +00:00
|
|
|
|
xdesc, x,
|
2018-02-06 13:29:57 +00:00
|
|
|
|
hDesc(h)...,
|
|
|
|
|
hDesc(c)...,
|
2018-02-06 18:56:17 +00:00
|
|
|
|
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params,
|
2018-02-02 17:48:08 +00:00
|
|
|
|
ydesc, y,
|
2018-02-08 02:37:55 +00:00
|
|
|
|
hDesc(ho)...,
|
2018-02-06 18:56:17 +00:00
|
|
|
|
hDesc(co)...,
|
2018-02-08 10:24:59 +00:00
|
|
|
|
workspace, reserve)
|
|
|
|
|
result = c == nothing ? (y, ho) : (y, ho, co)
|
|
|
|
|
return train == Val{true} ? (reserve, result) : result
|
2018-02-06 18:56:17 +00:00
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 10:24:59 +00:00
|
|
|
|
forwardTrain(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing) where T =
|
|
|
|
|
forward(rnn, x, h, c, Val{true})
|
|
|
|
|
|
2018-02-06 18:56:17 +00:00
|
|
|
|
function cudnnRNNBackwardData(rnn::RNNDesc{T}, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
|
|
|
|
|
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, rs) where T
|
|
|
|
|
@check ccall((:cudnnRNNBackwardData,libcudnn),cudnnStatus_t,
|
2018-06-12 17:09:18 +00:00
|
|
|
|
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
|
|
|
|
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing},
|
|
|
|
|
Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
|
|
|
|
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
2018-02-06 18:56:17 +00:00
|
|
|
|
libcudnn_handle[], rnn, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
|
|
|
|
|
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, length(ws), rs, length(rs))
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 10:24:59 +00:00
|
|
|
|
function backwardData(rnn::RNNDesc{T}, y, dy_, dho, dco, h, c, reserve) where T
|
|
|
|
|
# Same as above, any more efficient way?
|
2018-07-18 07:01:06 +00:00
|
|
|
|
dy = dy_ isa Integer ? zero(y) : dy_
|
2018-02-06 18:56:17 +00:00
|
|
|
|
yd = xDesc(y)
|
|
|
|
|
dx = y isa AbstractVector ? similar(dy, rnn.input) : similar(dy, rnn.input, size(dy, 2))
|
|
|
|
|
dh = similar(h)
|
|
|
|
|
dc = c == nothing ? nothing : similar(c)
|
|
|
|
|
cudnnRNNBackwardData(rnn, 1,
|
|
|
|
|
yd, y, yd, dy, hDesc(dho)..., hDesc(dco)...,
|
|
|
|
|
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params,
|
|
|
|
|
hDesc(h)..., hDesc(c)..., xDesc(dx), dx, hDesc(dh)..., hDesc(dc)...,
|
2018-02-08 10:24:59 +00:00
|
|
|
|
workspace[], reserve)
|
2018-02-06 18:56:17 +00:00
|
|
|
|
return c == nothing ? (dx, dh) : (dx, dh, dc)
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 10:24:59 +00:00
|
|
|
|
backwardData(rnn, y, dy, dho, hx, reserve) =
|
|
|
|
|
backwardData(rnn, y, dy, dho, nothing, hx, nothing, reserve)
|
2018-02-06 18:56:17 +00:00
|
|
|
|
|
|
|
|
|
function cudnnRNNBackwardWeights(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, yd, y, dwd, dw,
|
|
|
|
|
workspace, reserve) where T
|
|
|
|
|
@check ccall((:cudnnRNNBackwardWeights,libcudnn), cudnnStatus_t,
|
2018-06-12 17:09:18 +00:00
|
|
|
|
(Ptr{Nothing}, Ptr{Nothing}, Cint, # handle, rnnDesc, seqLength
|
|
|
|
|
Ptr{Ptr{Nothing}}, Ptr{T}, #x
|
|
|
|
|
Ptr{Nothing}, Ptr{T}, #hx
|
|
|
|
|
Ptr{Ptr{Nothing}}, Ptr{T}, #y
|
|
|
|
|
Ptr{Nothing}, Csize_t, #ws
|
|
|
|
|
Ptr{Nothing}, Ptr{T}, #dw
|
|
|
|
|
Ptr{Nothing}, Csize_t), #rs
|
2018-02-06 18:56:17 +00:00
|
|
|
|
libcudnn_handle[], rnn, seqlen, xd, x, hd, h, yd, y,
|
|
|
|
|
workspace, length(workspace), dwd, dw, reserve, length(reserve))
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-08 10:24:59 +00:00
|
|
|
|
function backwardWeights(rnn::RNNDesc{T}, x, h, y, reserve) where T
|
2018-07-18 07:01:06 +00:00
|
|
|
|
dw = zero(rnn.params)
|
2018-02-06 18:56:17 +00:00
|
|
|
|
cudnnRNNBackwardWeights(rnn, 1,
|
|
|
|
|
xDesc(x), x, hDesc(h)..., xDesc(y), y,
|
|
|
|
|
FilterDesc(T, (1, 1, length(dw))), dw,
|
2018-02-08 10:24:59 +00:00
|
|
|
|
workspace[], reserve)
|
2018-02-08 02:37:55 +00:00
|
|
|
|
return params(dw, rnn.input, rnn.hidden, ngates(rnn))
|
2018-01-26 12:16:34 +00:00
|
|
|
|
end
|
2018-02-02 16:19:56 +00:00
|
|
|
|
|
|
|
|
|
# Interface
|
|
|
|
|
|
|
|
|
|
import ..Flux: Flux, relu
|
2018-02-28 22:07:35 +00:00
|
|
|
|
import ..Tracker: TrackedArray
|
2018-08-20 12:08:04 +00:00
|
|
|
|
using .CuArrays.CUDAnative
|
|
|
|
|
using .CuArrays: @cuindex, cudims
|
2018-02-02 16:19:56 +00:00
|
|
|
|
|
2018-08-15 10:16:12 +00:00
|
|
|
|
function LinearAlgebra.copy_transpose!(dst::CuArray, src::CuArray)
|
2018-02-02 16:19:56 +00:00
|
|
|
|
function kernel(dst, src)
|
|
|
|
|
I = @cuindex dst
|
|
|
|
|
dst[I...] = src[reverse(I)...]
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
blk, thr = cudims(dst)
|
2018-08-15 10:16:12 +00:00
|
|
|
|
@cuda blocks=blk threads=thr kernel(dst, src)
|
2018-02-02 16:19:56 +00:00
|
|
|
|
return dst
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
CuParam{T,N} = Union{CuArray{T,N},TrackedArray{T,N,CuArray{T,N}}}
|
|
|
|
|
CuRNN{T} = Flux.RNNCell{<:Union{typeof(tanh),typeof(relu)},<:CuParam{T,2},<:CuParam{T,1}}
|
|
|
|
|
CuGRU{T} = Flux.GRUCell{<:CuParam{T,2},<:CuParam{T,1}}
|
|
|
|
|
CuLSTM{T} = Flux.LSTMCell{<:CuParam{T,2},<:CuParam{T,1}}
|
|
|
|
|
CuRNNs{T} = Union{CuRNN{T},CuGRU{T},CuLSTM{T}}
|
|
|
|
|
|
|
|
|
|
function copyparams!(m::CuRNNs, d::RNNDesc)
|
|
|
|
|
Wi, Wh = d.weights
|
|
|
|
|
copy_transpose!(Wi, Flux.data(m.Wi))
|
|
|
|
|
copy_transpose!(Wh, Flux.data(m.Wh))
|
|
|
|
|
copy_transpose!(d.bias, Flux.data(m.b))
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-06 18:56:17 +00:00
|
|
|
|
function RNNDesc(m::CuRNNs{T}) where T
|
2018-02-02 16:19:56 +00:00
|
|
|
|
h, i = length(m.h), size(m.Wi, 2)
|
|
|
|
|
mode = m isa CuRNN ?
|
|
|
|
|
(m.σ == tanh ? RNN_TANH : RNN_RELU) :
|
|
|
|
|
m isa CuGRU ? GRU : LSTM
|
|
|
|
|
r = RNNDesc{T}(mode, i, h)
|
|
|
|
|
return r
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
const descs = WeakKeyDict()
|
|
|
|
|
|
|
|
|
|
function desc(rnn)
|
|
|
|
|
d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = RNNDesc(rnn))
|
|
|
|
|
copyparams!(rnn, d)
|
|
|
|
|
return d
|
|
|
|
|
end
|
|
|
|
|
|
2018-07-10 17:16:37 +00:00
|
|
|
|
import Flux.Tracker
|
|
|
|
|
import Flux.Tracker: data, istracked, track, unbroadcast, @grad, nobacksies
|
2018-02-08 00:49:39 +00:00
|
|
|
|
|
2018-02-02 17:48:08 +00:00
|
|
|
|
istrain(m::CuRNNs, args...) = any(x -> x isa TrackedArray, (m.Wi, m.Wh, m.b, args...))
|
|
|
|
|
|
2018-02-02 16:19:56 +00:00
|
|
|
|
function (m::CuRNN{T})(h::CuParam{T}, x::CuParam{T}) where T <: Union{Float32,Float64}
|
2018-02-08 00:49:39 +00:00
|
|
|
|
result = istrain(m, h, x) ?
|
2018-07-10 17:16:37 +00:00
|
|
|
|
track(m, x, h, m.Wi, m.Wh, m.b) :
|
2018-02-08 00:49:39 +00:00
|
|
|
|
forward(desc(m), x, h)
|
|
|
|
|
return result[2], result[1]
|
2018-02-02 16:19:56 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function (m::CuGRU{T})(h::CuParam{T}, x::CuParam{T}) where T <: Union{Float32,Float64}
|
2018-02-08 00:49:39 +00:00
|
|
|
|
result = istrain(m, h, x) ?
|
2018-07-10 17:16:37 +00:00
|
|
|
|
track(m, x, h, m.Wi, m.Wh, m.b) :
|
2018-02-08 00:49:39 +00:00
|
|
|
|
forward(desc(m), x, h)
|
|
|
|
|
return result[2], result[1]
|
2018-02-02 16:19:56 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function (m::CuLSTM{T})(h::NTuple{2,CuParam{T}}, x::CuParam{T}) where T <: Union{Float32,Float64}
|
2018-02-08 00:49:39 +00:00
|
|
|
|
result = istrain(m, h, x) ?
|
2018-07-10 17:16:37 +00:00
|
|
|
|
track(m, x, h[1], h[2], m.Wi, m.Wh, m.b) :
|
2018-02-08 00:49:39 +00:00
|
|
|
|
forward(desc(m), x, h[1], h[2])
|
|
|
|
|
return (result[2], result[3]), result[1]
|
|
|
|
|
end
|
|
|
|
|
|
2018-02-20 01:32:15 +00:00
|
|
|
|
(m::CuRNN{T})(h::CuParam{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
|
|
|
|
|
(m::CuGRU{T})(h::CuParam{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
|
|
|
|
|
(m::CuLSTM{T})(h::NTuple{2,CuParam{T}}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
|
|
|
|
|
|
2018-07-10 17:16:37 +00:00
|
|
|
|
@grad function (m::Union{CuRNN,CuGRU})(x, h, Wi, Wh, b)
|
|
|
|
|
reserve, result = forwardTrain(desc(m), data(x), data(h))
|
|
|
|
|
result, function (Δ)
|
|
|
|
|
y, ho = result
|
|
|
|
|
dy, dho = Δ
|
|
|
|
|
h_ = hBatch(x, data(h))
|
|
|
|
|
dx, dh = backwardData(descs[m], y, dy, dho, h_, reserve)
|
|
|
|
|
(dWi, dWh), db = backwardWeights(descs[m], data(x), h_, y, reserve)
|
2018-08-20 12:08:04 +00:00
|
|
|
|
nobacksies(:RNN, (dx, unbroadcast(size(h), dh), transpose(dWi), transpose(dWh), db))
|
2018-02-08 00:49:39 +00:00
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
2018-07-10 17:16:37 +00:00
|
|
|
|
@grad function (m::CuLSTM)(x, h, c, Wi, Wh, b)
|
|
|
|
|
reserve, result = forwardTrain(desc(m), data.((x, h, c))...)
|
|
|
|
|
result, function (Δ)
|
|
|
|
|
y, ho = result
|
|
|
|
|
dy, dho, dco = Δ
|
|
|
|
|
h_ = hBatch(x, data(h))
|
|
|
|
|
c_ = hBatch(x, data(c))
|
|
|
|
|
dx, dh, dc = backwardData(descs[m], y, dy, dho, dco, h_, c_, reserve)
|
|
|
|
|
(dWi, dWh), db = backwardWeights(descs[m], data(x), h_, y, reserve)
|
|
|
|
|
nobacksies(:RNN,
|
|
|
|
|
(dx, unbroadcast(size(h), dh), unbroadcast(size(c), dc),
|
2018-08-20 12:08:04 +00:00
|
|
|
|
transpose(dWi), transpose(dWh), db))
|
2018-07-10 17:16:37 +00:00
|
|
|
|
end
|
|
|
|
|
end
|