Flux.jl/src/layers/conv.jl

258 lines
8.6 KiB
Julia
Raw Normal View History

2018-09-08 19:44:06 +00:00
using NNlib: conv, ∇conv_data, depthwiseconv
2018-02-26 22:43:07 +00:00
2018-06-26 13:05:07 +00:00
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
2017-12-18 18:05:48 +00:00
"""
2018-02-26 22:43:07 +00:00
Conv(size, in=>out)
Conv(size, in=>out, relu)
2017-12-18 18:05:48 +00:00
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Example: Applying Conv layer to a 1-channel input using a 2x2 window size,
giving us a 16-channel output. Output is activated with ReLU.
size = (2,2)
in = 1
out = 16
Conv((2, 2), 1=>16, relu)
Data should be stored in WHCN order (width, height, # channels, # batches).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
2017-12-18 18:05:48 +00:00
Takes the keyword arguments `pad`, `stride` and `dilation`.
2017-12-18 18:05:48 +00:00
"""
struct Conv{N,M,F,A,V}
2017-12-15 13:22:57 +00:00
σ::F
weight::A
2018-02-15 20:15:41 +00:00
bias::V
2018-02-26 22:43:07 +00:00
stride::NTuple{N,Int}
pad::NTuple{M,Int}
dilation::NTuple{N,Int}
2017-12-15 13:22:57 +00:00
end
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
return Conv(σ, w, b, stride, pad, dilation)
end
2018-02-15 20:52:29 +00:00
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
2018-02-26 22:43:07 +00:00
Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ,
stride = stride, pad = pad, dilation = dilation)
2017-12-15 13:22:57 +00:00
2018-07-12 21:43:11 +00:00
@treelike Conv
2017-12-15 13:22:57 +00:00
2018-11-12 20:21:27 +00:00
function (c::Conv)(x::AbstractArray)
2018-02-28 23:06:53 +00:00
# TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
2018-02-26 22:43:07 +00:00
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(conv(x, c.weight, cdims) .+ b)
2018-02-15 20:15:41 +00:00
end
2017-12-15 16:24:45 +00:00
2018-02-26 22:43:07 +00:00
function Base.show(io::IO, l::Conv)
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
2017-12-15 16:24:45 +00:00
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
2018-02-26 22:43:07 +00:00
2018-11-12 20:21:27 +00:00
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
2018-09-08 19:44:06 +00:00
"""
ConvTranspose(size, in=>out)
ConvTranspose(size, in=>out, relu)
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
"""
struct ConvTranspose{N,M,F,A,V}
2018-09-08 19:44:06 +00:00
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
2018-09-08 19:44:06 +00:00
dilation::NTuple{N,Int}
end
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
return ConvTranspose(σ, w, b, stride, pad, dilation)
end
2018-09-08 19:44:06 +00:00
2018-12-04 16:08:40 +00:00
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
2018-09-08 19:44:06 +00:00
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
stride = stride, pad = pad, dilation = dilation)
@treelike ConvTranspose
function conv_transpose_dims(c::ConvTranspose, x::AbstractArray)
# Calculate size of "input", from ∇conv_data()'s perspective...
combined_pad = (c.pad[1:2:end] .+ c.pad[2:2:end])
I = (size(x)[1:end-2] .- 1).*c.stride .+ 1 .+ (size(c.weight)[1:end-2] .- 1).*c.dilation .- combined_pad
C_in = size(c.weight)[end-1]
batch_size = size(x)[end]
# Create DenseConvDims() that looks like the corresponding conv()
return DenseConvDims((I..., C_in, batch_size), size(c.weight);
stride=c.stride,
padding=c.pad,
dilation=c.dilation,
)
end
2018-12-04 16:08:40 +00:00
function (c::ConvTranspose)(x::AbstractArray)
2018-09-08 19:44:06 +00:00
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = conv_transpose_dims(c, x)
return σ.(∇conv_data(x, c.weight, cdims) .+ b)
2018-09-08 19:44:06 +00:00
end
function Base.show(io::IO, l::ConvTranspose)
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
2018-12-09 17:50:09 +00:00
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
2018-10-23 17:40:06 +00:00
end
2018-12-04 16:08:40 +00:00
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
2018-10-23 17:40:06 +00:00
2018-12-04 16:08:40 +00:00
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
DepthwiseConv(size, in)
DepthwiseConv(size, in=>mul)
DepthwiseConv(size, in=>mul, relu)
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `mul` specify the number of input channels and channel multiplier respectively.
In case the `mul` is not specified it is taken as 1.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad` and `stride`.
"""
struct DepthwiseConv{N,M,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
dilation::NTuple{N,Int}
end
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
pad = expand(Val(2*(N-2)), pad)
dilation = expand(Val(N-2), dilation)
return DepthwiseConv(σ, w, b, stride, pad, dilation)
end
2019-01-24 13:18:30 +00:00
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1) where N =
DepthwiseConv(param(init(k..., 1, ch)), param(zeros(ch)), σ,
stride = stride, pad = pad, dilation=dilation)
2019-01-24 13:18:30 +00:00
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform,
stride::NTuple{N,Integer} = map(_->1,k),
pad::NTuple{N,Integer} = map(_->0,2 .* k),
dilation::NTuple{N,Integer} = map(_->1,k)) where N =
DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ,
stride = stride, pad = pad)
@treelike DepthwiseConv
function (c::DepthwiseConv)(x)
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
end
function Base.show(io::IO, l::DepthwiseConv)
print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
2018-07-31 16:10:53 +00:00
"""
2018-08-24 02:31:13 +00:00
MaxPool(k)
2018-07-31 16:10:53 +00:00
2018-09-04 13:30:02 +00:00
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
2018-07-31 16:10:53 +00:00
Takes the keyword arguments `pad` and `stride`.
"""
struct MaxPool{N,M}
k::NTuple{N,Int}
pad::NTuple{M,Int}
stride::NTuple{N,Int}
2018-07-31 16:10:53 +00:00
end
function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = expand(Val(2*N), pad)
return MaxPool(k, pad, stride)
end
2018-08-24 02:31:13 +00:00
function (m::MaxPool)(x)
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return maxpool(x, pdims)
end
2018-07-31 16:10:53 +00:00
2018-08-24 02:31:13 +00:00
function Base.show(io::IO, m::MaxPool)
2018-09-04 13:30:02 +00:00
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
2018-07-31 16:10:53 +00:00
end
"""
2018-08-24 02:31:13 +00:00
MeanPool(k)
2018-07-31 16:10:53 +00:00
2018-09-04 13:30:02 +00:00
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
2018-07-31 16:10:53 +00:00
Takes the keyword arguments `pad` and `stride`.
"""
struct MeanPool{N,M}
2018-07-31 16:10:53 +00:00
k::NTuple{N,Int}
pad::NTuple{M,Int}
2018-07-31 16:10:53 +00:00
stride::NTuple{N,Int}
2018-08-24 02:31:13 +00:00
end
function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = expand(Val(2*N), pad)
return MeanPool(k, pad, stride)
end
2018-07-31 16:10:53 +00:00
function (m::MeanPool)(x)
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return meanpool(x, pdims)
end
2018-07-31 16:10:53 +00:00
2018-08-24 02:31:13 +00:00
function Base.show(io::IO, m::MeanPool)
2018-09-04 13:30:02 +00:00
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
2018-07-31 16:10:53 +00:00
end